Regional Gateway Commerce Center

NWC I-8/I-10 Traffic Interchange
 Casa Grande, Arizona

Master Circulation Study

Prepared for:

Casa Grande Mountain Ranch, LP

Prepared by:

Lee Engineering 3610 N. $44^{\text {th }}$ Street, Suite 100

Phoenix, Arizona 85018
(602) 955-7206

March, 2014

Regional Gateway Commerce Center NWC I-8/I-10 Traffic Interchange
 Casa Grande, Arizona

MASTER CIRCULATION STUDY

Prepared for:

Casa Grande Mountain Ranch, LP

P.O. Box 15267

Phoenix, AZ 85060

Prepared by:
Lee Engineering 3610 N. $44^{\text {th }}$ Street, Suite 100 Phoenix, Arizona 85018
Phone: (602) 955-7206

March, 2014

TABLE OF CONTENTS

Introduction and Summary 1
Study Area Conditions 5
Analysis of Existing Condition 15
Trip Generation. 24
Trip Distribution 26
Proposed Site Access and Internal Site Circulation at Full Build-out 26
LOS Analysis at Site Build-Out 32
Incremental LOS Analysis to Determine Near-Term Site Development Threshold Values 36
Conclusions \& Recommendations 38

LI ST OF TABLES

Table 1 Level of Service Criteria for Signalized/Unsignalized Intersections 16
Table 2 Capacity Analysis Summary, 2013 Existing Conditions 18
Table 3 Capacity Analysis Summary, Background Conditions (Opening Year) 21
Table 4 Trip Generation Estimate 25
Table 5 Roadway Segment LOS, Background Conditions (Build-out) 33
Table 6 Roadway Segment LOS, Total Traffic Conditions (Build-out) 34
Table 7 Near-Term Development Trigger Points 37

LIST OF FIGURES

Figure 1 Vicinity Map 6
Figure 2 Site Adjacent Developments 8
Figure 3 Existing Roadway, Traffic Control, and Traffic Volume Conditions 10
Figure 4 Proposed Land Uses, Site Access Locations, and Opening Year Access Routing 12
Figure 5 Non-site Background Traffic Estimates, Opening Year 20
Figure 6 Non-site Background Traffic Estimates, Build-out Year. 23
Figure 7 Trip Distribution 27
Figure 8 Site Generated Daily Traffic Volume Estimates on the Internal Site Roadways at Full Build-out 28
Figure 9 Proposed Site Access and Internal Roadway Need at Full Build-out 29
Figure 10 Total Traffic Projections at Build-out - Existing Roadway Network 35

I ntroduction and Summary

Introduction

This study has been prepared to analyze the access potential of the proposed Regional Gateway Commerce Center, located at the northwest quadrant of the I-8/I-10 interchange in Casa Grande, Arizona. The purpose of this study is to prepare a Master Circulation Plan that guides the subject site through its development process, helping to determine on-site and off-site roadway improvements needed to accommodate full build-out traffic demand. This circulation plan will be a changing, evolving document dependent upon tenant demand characteristics, future roadway improvements, refinements of future traffic volumes, and other site and non-site conditions. This study is being provided for the City of Casa Grande to better understand the development potential of the site and it's impacts to the adjacent roadway system prior to the time when a more formal traffic impact study is required. This master circulation plan has been prepared as a guideline for the first phase of site development, which currently has an unknown timeline associated with it. This study has made some assumptions to identify potential site needs at full build-out and identify near-term site development "triggers" to accommodate the first phase of construction that has unknown traffic demands at this time. It is assumed more detailed traffic impact studies will be required as a greater level of detail pertaining the development characteristics of the site is known.

Major Assumptions

Based on comments received from the City of Casa Grande and ADOT pertaining to a traffic impact study that was previously provided for this site, but not approved, the following major assumptions pertaining to this project are as follows:

- No City, County, or ADOT roadway improvements are planned for the foreseeable future. Any roadway improvement projects needed to provide necessary roadway capacity and to serve interim develop projects will be developer driven and developer paid.
- The only ADOT study-area project anticipated before the assumed 2030 build-out year for this site is an I-10 widening project that will add a general purpose lane to the inside of the existing mainline such that three through lanes are to be provided from the I-8 system interchange west.
- Although other site adjacent developments are anticipated within the study area, their volume impacts have not been included as part of the background traffic volume expansion. Any site contributing to the deterioration of operational performance measures within the study are expected to mitigate or at a minimum contribute to the cost associated with any roadway improvement, similar to this project.
- Analysis has been conducted for an assumed 2018 opening year of the site, a time frame used solely for the basis of expanding existing traffic volumes to a horizon year and allowing for a conservative analysis of baseline roadway conditions.
- For the site's anticipated opening year, a single access point, located at the Cornman/Henness Road alignment is planned. As part of the opening year condition, the developer plans to construct a 2-lane access road along a westerly
alignment to intersect Peart Road south of Jimmie Kerr to accommodate site traffic.
- Although additional site access points are planned, the ability to accelerate these access points to an opening year condition is constrained. Therefore, focus on the opening year aspects of this site is provided along with an evaluation of future site conditions assumed at full build-out of the site under its current plan.

Executive Summary

This report documents the assumptions and procedures used to determine roadway improvement requirements for the opening year of the site based on certain trigger values. These values were developed from the site's land use plan, it's general layout, and its trip generation characteristics at full build-out. The following summary is a result of the analysis conducted.

Site Development Description

The subject site is to develop approximately 423 acres located at the northwest corner of the I-8 / I-10 interchange in addition to dedicating about 127 acres to ADOT for the improvement of the I-8/I-10 system interchange, frontage roads, and future I-8/Henness Road Traffic Interchange. Overall, the site is planned to construct over 9.37 million square-feet of corporate headquarter office, business office, general office, general light industrial and commercial space. At full build-out, the site is anticipated to generate 71,300 daily trip ends with 10,740 trips occurring in the AM peak hour and 9,980 trips occurring in the PM peak hour.

Principal Findings

- Intersection analysis of background traffic conditions at the intersection of Jimmie Kerr Boulevard and the I-10 eastbound on-off ramps indicate the stop-controlled southbound approach (I-10 off-ramp) is expected to operate at level of service (LOS) F in both the AM and PM peak hours. Improvements to this intersection will be required at the time of site opening or prior to, if other site adjacent development is constructed within this time frame.
- Assuming only the west site access is to be constructed and improvements to the Jimmie Kerr/I-10 EB On-Off Ramp intersection are in-place, the following trigger points are identified and the level of improvement needed, based on a percentage of total site occupancy. The results indicate about 27% of site occupancy can be accommodated with a single Henness/Cornman site access (with or without the I8/Henness TI), above this value requires additional site access.

Summary of Improvement Requirements at Opening Year, Based on Total Site Occupancy

Percent of Total Site Occupancy	Roadway Improvements Required			
West Access Roadway \& Single Cornman/Henness Site Access				
0.0%	Improvement to the Jimmie Kerr / I-10 EB On-Off Ramp	$	$	up to 2.7\%
:---				
Kone, some minor signal timing adjustments at Jimmie				
Kerr/Peart Road only				

- At full build-out, a total of 5 access points are being considered. The access points are anticipated to accommodate 11 inbound lanes and 8 outbound lanes at this time. All access points have an unknown time horizon and are dependent upon market forces and other considerations as to if and when they are to be pursued.
- It is anticipated that both the I-8/Henness TI and the Cox Road access will be required to accommodate site demand at build-out and provide efficient access to and from the adjacent freeway network. Potential direct access connections from the I-8 westbound Frontage Road and possibly the Henness Road TI westbound off-ramp may also be required.
- Internal to the site, the loop roadway should be considered as a six-lane facility to accommodate potential build-out year volumes estimated to exceed 3,000 vehicles during peak hour conditions. Initial loop road construction may be appropriate as a 4-lane facility, however, underground facilities and future intersection requirements should consider the wider ROW need at this time.
- The ability to channelize inbound and outbound turn movements at site access points will promote vehicle flow and reduce delays and queues. Use of roundabouts at internal intersections with the loop roadway could eliminate potential vehicle back-ups at high volume locations within the site and promote continuous flow. Traffic signals could be considered at the more minor loop road intersections that are not major ingress/egress intersections to help promote truck movements, left turn movements and help create gaps in the traffic stream.
- The ability to manage the trips generated from the corporate headquarter land use will have a significant impact to the operation of the site's internal roadway operation. Estimates show over half of all site trips are to be generated from these three lots (5.5 million SF of office space). Options to minimize the traffic generated from these lots on the site's internal loop road are needed in the ultimate condition. Off-site and/or on-site parking areas adjacent to direct access ramps with bus shuttle service, providing direct access to/from the corporate headquarters land uses that do not utilize the internal loop road, or other means to minimize all internal site traffic is needed in the ultimate condition to operate in an efficient manner.

Study Area Conditions

Study Area

The proposed development is located a few miles southeast of the downtown Casa Grande, located at the northwest corner of the I-8/I-10 interchange area. The influence area for the approximate 423 acre Regional Gateway Commerce Center site is along the Jimmie Kerr Boulevard between Trekell Road and Sunland Gin Road and the access points/routes onto I-8 and I-10 accommodating both local and regional traffic demand. Figure 1 is provided showing a vicinity map of the general study area, the existing roadway network, and the future I-8/Henness Road Traffic Interchange (TI), I-10/Selma Highway TI, and I-8/I-10 System Interchange area that currently do not have a timeframe associated with their construction. The study area is for this project is identified to be bounded by:

- West: Trekell Road
- North: Selma Highway/Jimmie Kerr Boulevard
- East: Sunland Gin Road
- South: I-8

Existing and Proposed Development in the Study Area

Existing land uses in the study area are generally rural in nature consisting mostly of agriculture areas, areas of undeveloped land, low density residential dwellings, and some small commercial developments that can be considered low volume trip generators. The subject site was partially utilized as a campground with its remaining area undeveloped. The existing land uses adjacent to the site are highlighted below.

- North - Vacant commercial building (furniture outlet store) south of Jimmie Kerr Boulevard off of Cox Road and a mostly vacant Outlets at Casa Grande shopping center on the north side of Jimmie Kerr just west of I-10 at the intersection at Tanger Drive.
- East - The I-10 corridor. East of the I-10 corridor vacant/agricultural areas with a partially occupied distribution center and an apparent vehicle impound lot, both having access only onto Sunland Gin Road south of Jimmie Kerr.
- South - The I-8 corridor. South of the I-8 corridor low density residential and mostly undeveloped land.
- West - Agricultural/undeveloped areas.

General Study Area

The City of Casa Grande (City) has identified the following projects near the subject site that have the potential of developing in the near future. Although no specific traffic impact studies have been provided for the first three projects listed, the following information for the developments is noted:

1. An auction house, SEC of Jimmie Kerr Boulevard and I-10. This site is to auction large machinery, farm-related equipment, and other associated items. This site is only projected to be open during weekend periods and not projected to have a significant impact to study area traffic volumes.
2. The Station, NWC of Jimmie Kerr Boulevard and I-10. This project is to redevelop the existing 187,000 SF outlet mall area as a destination for home improvement type offerings. For the purposes of trip generation, this site will be considered a Factory Outlet Center.
3. The Station II, west of the Station off of Jimmie Kerr Boulevard. A 34-acre retail area with a hotel and multi-family residential on-site.
4. Casa Grande Mountain Ranch South, the sister property to the current subject property to be located on the south side of I-8 and west of I-10. A traffic report has been previously provided for this site (by Lee Engineering, 2006) and is identified to be a viable project noting over 2,300 residential housing units along with commercial, a resort hotel, and specialty retails areas are projected that would supplement the growth of the subject site. In total, this site is estimated to generate 38,000 daily trips.

Proposed development locations for sites 2, 3, and 4 are highlighted graphically in Figure 2.

Existing Roadways and Traffic Control

The physical transportation characteristics of the site adjacent roadways consist of the following:

- I-8 and I-10 - The two site adjacent freeways are divided two-lane directional facilities providing access to the Phoenix, Tucson, and Western Arizona/Southern California areas. A full access I-10 interchange at Jimmie Kerr Boulevard is anticipated to accommodate the majority of regional trips. The interchange is located about 1-mile north of I-8 and has both of its eastbound and westbound on and off ramps located on the north side of Jimmie Kerr, operating as separate minor-street stop controlled intersections. At this time, regional I-8 traffic to/from the west can use the closest site interchange at Trekell Road, 3 miles west of I-10. The single lane off-ramp approaches to Trekell Road are minor-street stop controlled locations. Depending upon site accessibility via Cox Road at the Jimmie Kerr/I-10 EB intersection and destination within the subject site, a portion of I-8 motorists may choose to by-pass the Trekell interchange in favor of the I-10/Jimmie Kerr interchange as it would provide for a faster and more convenient route. Eventually, the future I-8/Henness Road TI will provide for a more convenient access for regional traffic to/from the east and west.

- Jimmie Kerr Boulevard (SR 84) - A two-lane facility on a northwest/southeast alignment parallel to the Union Pacific Railroad providing access between downtown Casa Grande and the City of Eloy to its east. This roadway is identified as a City Principal Arterial having a continuous center two-way left turn lane west of its intersection with Selma Highway and east of Tanger Drive. The roadway has a speed limit of 45 mph near its I-10 interchange and 50/55 mph west of this location prior to its approach into Casa Grande. Ultimately, this roadway is proposed as a 6-lane facility.
- Trekell Road - A two-lane roadway south of Jimmie Kerr Boulevard and identified as a City Principal and a regionally significant roadway providing access between the downtown area of Casa Grande and I-8. The roadway currently has a posted speed limit of 50 mph . This roadway is anticipated to capture a portion of I-8 site traffic to/from the west until the I-8/Henness Road TI opens (or site accessibility via Cox Road) where it will no longer be an attractive option to site-related motorists.
- Peart Road - Identified as a City Principal Arterial, although south of Jimmie Kerr Boulevard it provides access to only a few single family homes, a park, agricultural areas, and some low trip generating agricultural businesses. The posted speed limit currently is 45 mph on this two-lane facility. North of Jimmie Kerr, the roadway continues as a two-lane facility until reaching Early Road, about 0.6 miles north of Jimmie Kerr, where it widens to a four-lane facility heading toward Florence Boulevard.
- Henness Road, Selma Highway Extension, and Cornman Road south of Jimmie Kerr Boulevard currently do not exist or exist only as unpaved, low-volume agricultural roads. None of the roadways extend across Jimmie Kerr at this time.
- Cox Road - This two-lane roadway is the south leg of the I-10 eastbound on/off ramp at the Jimmie Kerr Boulevard intersection providing access to a currently vacant furniture outlet building, the previous Buena Tierra Campgrounds, and the location of the subject site. This roadway is paved with flashing light signals and automatic gates at its highway-rail grade crossing of the Union Pacific rail line, located about 150 feet south of Jimmie Kerr Boulevard. Upgrades to this rail crossing/roadway will be needed if Cox Road is to be used for site access.

Lane configurations, traffic control, AM and PM peak hour intersection turning movement volumes at the existing major roadway intersections within the study area and daily traffic volumes of study area roadway segments are shown in Figure 3.

$\Theta \odot$

Legend

$$
\begin{array}{ll}
\text { X } & \text { - ATR Count Location City/ADOT } \\
\mathbf{X} & \text { - TMC Count Location City/Developed } \\
\text { Y } \uparrow & \text { - Existing Lane Configuration } \\
\mathrm{xx} / \mathrm{Xx} &
\end{array}
$$

Proposed Site Access Locations and Routes

A copy of the site's color-coded land use layout plan is provided in Figure 4. This figure also indicates site access locations and the opening year travel patterns anticipated. The figure shows the progression of potential site access need, an orange box being the initial opening year access (Access 1), yellow boxes (Access 1A and 2) indicating near-term access potential, and the light purple boxes (Access 3, 4, and 5) being a more long-term access options. For the opening year, only the west access (Access 1) is certain as the site developer will construct the west access road from its site entrance at Cornman Road along the Henness Road and future Selma Highway alignments to Peart Road (highlighted in thick orange line work, left side of figure).

Proposed Access Points

1. Opening Year, Henness Road /Cornman Road

1A. Future Year, I-8 / Henness Road Traffic Interchange (site access via Henness / Cornman)
2. Future Year, Jimmie Kerr Boulevard / I-10 EB On-Off Ramps / Cox Road
3. Future Year, Direct Access to/from the I-8 and/or I-10 WB Frontage Road
4. Future Year, I-8 Underpass to development south of I-8
5. Future Year, Direct Access I-8/ I-10 WB Ramp

Proposed Routing

Opening Year - Assuming site access is only available via the Henness/Cornman route, the opening year travel routes are described below:

- To/From I-8 west (regional traffic) - Use of I-8/Trekell interchange, north to the Trekell/Jimmie Kerr intersection, east to the Jimmie Kerr/Peart intersection, then south to access the site.
- To/From I-10 east (regional traffic) - Use of the I-10/Jimmie Kerr interchange, west to the Jimmie Kerr/Peart intersection, then south to access the site.
- To/From I-10 north/west (regional traffic) - Use of the I-10/Jimmie Kerr interchange, west to the Jimmie Kerr/Peart intersection, then south to access the site. Some I-10 users may travel an I-10/Florence/Peart Road route to access the site.
- To/From Casa Grande Area north and west (local traffic) - Use of Jimmie Kerr or Peart Road to the Jimmie Kerr/Peart intersection, then south to access the site.
- To/From Eloy area or points east (local traffic) - Use of Jimmie Kerr to Peart Road to the site.
- To/From Arizona City or points south (local traffic) - Use of Sunland Gin Road to Jimmie Kerr, then west to Peart Road to access the site.

Opening Year Travel Routes

Legend

X - Access Location
Orange (Opening Year) Yellow (Near-Term Access)
Purple (Leng Purple (Long-Term Access)

- Opening Year Travel Routes

Paved Access Roadway to be constructed Paved Access Roadway to be co
by Developer for opening year.

Notes:
Site trips to from the I-8 / Henness TI (Access 1A) to enter site via Access 1.

REGIONAL GATEWAY COMMERCE CENTER casagrande, az PREPAREDFOR: CASA GRANDE MOUNTAIN RANCH LIMITED PARTNERSHIP, GEORGE CHASSE-GENERAL PARTNER
DATE: $6-20-13$ PREPARED FO
DATE: $6-20-13$

MASTER LANDUSE PLAN

\square

Future Year - The Cox Road access is being considered to provide more efficient ingress/egress to the interstate system and motorists using Jimmie Kerr Boulevard. Dependent upon access need of potential site businesses, the amount of on-site development and timing of the I-8/Henness Road interchange, the Cox Road access offers the potential of accommodating a significant amount of site traffic demand, independent of any network modifications associated with a new Selma Highway TI. Improvements to the UPRR crossing and Jimmie Kerr/I-10 intersections can be anticipated if this access is utilized.

Future Year - As the site continues to grow, additional access points are anticipated to help accommodate increased site-related demand by providing alternative access points to/from the south and the interstate system helping to alleviate traffic demand at the other access points. No additional access points outside of the five identified are being considered at this time.

Near-Term and Long-Term Transportation Improvements

At this time, no near-term transportation system improvements are being considered by the City, County, or State prior to the opening year of the site. City and ADOT representatives have identified that any near term roadway improvements within the study area will likely be developer driven and developer paid.

Previously, the City of Casa Grande in their 2006 Small Area Transportation Study (CGSATS) identified a number of study area improvements targeted for year 2020, such as the widening of Jimmie Kerr Boulevard from Sunland Gin Road to Peart Road to a six-lane facility, are not being considered at this time due to reduced income from the economic/development downturn in recent years. Similarly, County and State TIP study area projects identified for future years have also been extended, modified or eliminated.

The following improvements were previously identified with a future horizon year beyond 2020 and are still assumed to be viable projects, however, the estimated build dates are now unknown. No major study area projects were identified within the latest County CIP or State STIP literature for the study area. Only the first project below is identified to have a known timeline.

1. ADOT (from previous CIP publication) - I-10 widening project (I-10 Widening, Early Road to I-8). Previous CIP documentation had targeted this project for a mid2020's construction time frame but has since been removed and changed. Recent ADOT comments identify this project will only add one directional lane to the inside of the I-10 corridor in this area. Previously, this project was to also include an I10/Selma Highway TI, elimination of the I-10/Jimmie Kerr interchange, and construction of frontage roads between Selma Highway and Jimmie Kerr Boulevard for continued access. The time frame for construction of this project is unknown, but ADOT has identified that a 2030 completion data can be assumed for the widening.
2. ADOT (from the I-10 Corridor Study, I-8 to Tangerine Road) - As part of the I-10 corridor improvements associated with this project, work elements of this project are planned to include the construction of a new I-8/I-10 System Interchange to improve access between the two interstates, inclusion of an eastbound and westbound frontage road network between Sunland Gin Road and Henness Road, and a new traffic interchange at Henness Road. This project has an unknown construction time frame, recently estimated by ADOT to be beyond year 2030. It is understood that the I8/Henness Road TI portion of this project could be fast-tracked by the developer, depending upon their participation in the cost of construction.
3. ADOT (from the I-8/Henness Road TI Change of Access Report) - Construction of an I-8/Henness Road interchange. The time frame for construction of this project is unknown and currently going through an evaluation/approval process. Construction of this TI was to be part of a planned I-8/I-10 system interchange improvement project. Currently, the system interchange improvements have an unknown construction year time horizon, but the site developer may wish to accelerate the construction of the I-8/Henness Road interchange portion. The need for its acceleration is dependent upon securing tenant support, need to facilitate site access, and need to provide efficient access between Jimmie Kerr Boulevard and areas south of I-8 including the Casa Grande Mountain Ranch development.
4. Pinal County (2006 CGSATS, Streets CIP for New Developments and Development Fees) - Fee development based on the improvement of 34 lane-miles of Selma Highway in IFA 2, which includes the roadway section west of I-10. It is assumed that Selma Road would be constructed to a 4-lane facility and would be a grade separated over the Union Pacific Railroad. The time frame for construction of this project is currently unknown and would likely be delayed until the future ADOT construction of the I-10/Selma Highway TI, the I-8/I-10 system interchange project, and/or traffic demand with the I-8/Henness Road TI require such action.

For the purposes of this study, only the I-10 widening project is anticipated for the buildout year of this site.

Analysis of Existing Conditions

Traffic Volumes

Historical

Historical traffic volumes, in the form of daily (24-hour) and peak hour counts, were obtained for the adjacent roadway segments as reported by the City of Casa Grande, ADOT, or as identified in the Henness Road/I-8 Traffic Interchange report (April 2013) submitted to ADOT by Kimley-Horn. The location of applicable traffic count data for the most recent count year has been summarized in Figure 3. No new 24-hour volumes have been collected as part of this project.

AM and PM Peak Hour Intersection Count Data
To confirm traffic volume levels and compare turn movement percentages to historically collected data, a 30 -minute turning movement check count was conducted at the Jimmie Kerr Boulevard intersections with the I-10 EB and WB on/off ramps and at the intersection of Jimmie Kerr and Peart Road. From the comparison of count data obtained at these intersections in 2006, the recent 2013 hourly volume entering the intersection was lower by approximately 50% from 2006 peak hour values and 2011 City volume data. This high volume reduction could partially be attributed to the closing of the nearby outlet mall facility (driveway located 450 feet west of this intersection at the signalized intersection of Tanger Drive) in addition to a seasonal variation component. Along the freeway segments, it is assumed that the latest traffic volumes identified in the I-8/Henness Road TI Change of Access Report are current.

Noting data can be skewed when very low volumes are adjusted through an overall growth factor, existing AM and PM peak hour intersection turning movement volumes at Jimmie Kerr with the I-10 ramps and at Peart Road were calculated by taking the 2011 daily traffic volumes as collected by the City and applying a turn movement percent based on collected volume data from 2006 or from the 2011 volume data. The results of these calculations are also shown in Figure 3 along with the identified lane configurations and traffic control. Other intersections in the area along Jimmie Kerr Boulevard are not identified to be major intersections, highlighted as being low volume locations at "t-type" minor-street stop controlled intersections (a result of access to I-10 and I-8 available via other routes to and from the residential and commercial areas of Casa Grande). The only other signalized intersection in the study area is the intersection of Jimmie Kerr with Tanger Drive, virtually having negligible turn volume demand with the closing of the outlet mall now with only one or two small business operations remaining. Volume distribution at this intersection of Jimmie Kerr Boulevard and Sunland Gin Road has been estimated due to a lack of intersection turn movement volume data found for these locations.

Capacity Analysis of Existing Conditions

For the existing AM and PM peak hour conditions, study area intersections were analyzed based on the methodologies presented in the Highway Capacity Manual 2010 and evaluated using the Synchro software package (version 8). To provide an indication
of intersection performance, signalized and unsignalized intersections are typically reported in terms of levels of service (LOS). The analysis of signalized intersections is based on the approach control delay, which includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay for all movements. Unsignalized stop-controlled intersection analysis is based on the minor street approach or critical movement, whichever is applicable. The capacity criteria for signalized and unsignalized intersection analysis are presented in Table 1.

Table 1. Level of Service Criteria for Signalized/Unsignalized Intersections

Level of Service	Average Control Delay (seconds/vehicle)	
LOS	Signalized	Unsignalized
A	≤ 10.0	≤ 10.0
B	>10.0 and ≤ 20.0	>10.0 and ≤ 15.0
C	>20.0 and ≤ 35.0	>15.0 and ≤ 25.0
D	>35.0 and ≤ 55.0	>25.0 and ≤ 35.0
E	>55.0 and ≤ 80.0	>35.0 and ≤ 50.0
F	>80.0	>50.0

Source: Highway Capacity Manual, HCM 2010, Transportation Research Board, 2000.
Additional performance measures such as volume to capacity (v / c) ratios and queue lengths also provide an indication of operations. For example, at two-way stop controlled intersections, main street traffic volumes may impose longer average delays for a small number of side-street vehicles, thus creating vehicle delays which correspond to a poor level of service. Motorists and agencies will typically accept longer delays (LOS E or F) if gaps in the traffic stream are anticipated within a reasonable timeframe and the side street traffic volumes do not warrant a traffic signal. As a general guide, gap acceptance thresholds for the longer delay values can be defined when the v/c ratios are under 0.80 , which corresponds to 80 percent capacity usage for that movement. Therefore, a traffic movement with a poor level of service but with a v/c value under 0.80 will be considered as operating acceptably. This is a typical condition of many low volume driveway and roadway intersection locations along busier major streets that would not warrant a change in traffic control or is associated with a low volume signalized turn movement at a signal that has a long cycle length.

As part of the City's Small Area Transportation Study, daily roadway capacities were based on roadway functional class and level of service based on maximum volumecapacity ratios. The following capacities and LOS used in that report are indicated below:

Functional Classification	Daily Per Lane Capacity	LOS	Maximum V/C
Arterial	8,700	A	0.30
Collector	7,500	B	0.54
Freeway Ramps	8,000	C	0.75
		D	0.90
		E	1.00
		F	>1

In review of City and ADOT guidelines, the City of Casa Grande requires intersections and roadways that operate at LOS D or better without the development to be mitigated back to LOS D with site traffic. Where the highway/intersection will operate below LOS D in the horizon year(s) without the development traffic, the traffic impact of the development is to be mitigated to provide the same LOS at the horizon year(s). ADOT has similar mitigation requirements, but requires mitigation to LOS C instead of LOS D.

Using the AM and PM peak hour traffic volumes, the intersection controls and lane configurations shown in Figure 3 along with estimated signal timing inputs from field observation at the Jimmie Kerr/Peart intersection, and use of peak hour factors as outlined by ADOT, the information from both intersections were input into the Synchro software program to determine operational conditions of the study intersections. The results of the 2013 existing conditions are shown in Table 2. All capacity output sheets are contained in the appendix.

From the results shown in Table 2, the following can be identified:

- The signalized intersection of Jimmie Kerr and Peart is expected to operate in an overall acceptable service level (LOS D or better) in both the AM and PM peak hours with all individual movements operating at LOS B or better.
- At the I-10 stop controlled ramps with Jimmie Kerr, the only movement operating at an elevated delay level is the eastbound (southbound) I-10 Off-ramp left turn movement to eastbound Jimmie Kerr. Both AM and PM peak hours are identified to operate at a LOS F with v/c ratios just under 0.80 . Although based on operational criteria stated earlier, this movement would be considered to operate barely within the acceptable range. ADOT considers this movement as operating in an unacceptable manner. An obvious mitigation measure for this existing condition would be to signalize the intersection.
- All movements at the Jimmie Kerr and Sunland Gin intersection are estimated to operate in an acceptable manner in both the AM and PM peak hours
- All roadway segments within the study area operate at LOS C or better under current traffic volume conditions.

Table 2. Capacity Analysis Summary, 2013 Existing Conditions Intersections

Intersection / Movement	EXISTING CONDITIONS							
	AM Peak				PM Peak			
	LOS	Delay	V/C	Queue	LOS	Delay	V/C	Queue
Int 1. Jimmie Kerr / Peart (S)	B	13.9			B	18.3		
EB Left	B	17.7		<50	B	15.7		<50
EB Thru/Right	B	10.6		150	B	19.1		261
WB Left	B	18.0		<50	B	15.7		<50
WB Thru/Right	B	16.1		254	B	19.7		249
NB Leff/Thru/Right	B	12.4		<50	B	11.1		<50
SB Left	B	14.7		62	B	19.4		134
SB Thru/Right	B	12.0		<50	A	7.2		<50
Int 2. Jimmie Kerr / Cox / I-10 EB On/Off Ramps (MSS)								
EB Left	A	9.1		<50	A	8.6		<50
EB Thru/Right	-	-		-	-	-		-
WB Left	-	-		-	-	-		-
WB Thru/Right	-	-		-	-	-		-
NB Leff/Thru/Right	-	-		-	-	-		-
SB Left/Thru	F	63.3	0.77	130	F	59.3	0.79	148
SB Right	B	12.3		<50	B	11.8		<50
Int 3. Jimmie Kerr / I-10 WB On/Off Ramps (MSS)								
EB Left	A	8.8		<50	A	8.5		<50
EB Thru	-	-		-	-	-		-
WB Thru/Right	-	-		-	-	-		-
SB Left	-	-		-	-	-		-
SB Right	B	13.5		<50	B	11.7		<50
Int 4. Jimmie Kerr / Sunland Gin (MSS)								
EB Left	A	8.5		<50	A	8.1		<50
WB Left	A	8.1		<50	A	8.2		<50
NB Left/Thru	C	22.3		<50	C	22.0		<50
NB Right	B	10.8		<50	B	11.0		<50
SB Leff/Thru/Right	C	19.9		<50	C	19.3		<50

Notes: $(S)=$ Signal, $(M S S)=$ Minor Street Strop
V/C shown if LOS E or F
Queue is the reported 95th percentile lenght in feet

Roadway Segments

Roadway Segment	Facility Type	Daily Volume	Facility Capacity	VIC	LOS
Jimmie Kerr East of Peart	2 Lane Arterial	10,030	17,400	0.58	C
Jimmie Kerr East of Tanger	2 Lane Arterial	10,030	17,400	0.58	C
Jimmie Kerr East of I-10	2 Lane Arterial	10,062	17,400	0.58	C
Selma W of I-10	2 Lane Arterial	1,675	17,400	0.10	A
Peart N of Jimmie Kerr	2 Lane Arterial	4,667	17,400	0.27	A
Peart S of Jimmie Kerr	2 Lane Arterial	1,222	17,400	0.07	A
Trekell S of Jimmie Kerr	2 Lane Arterial	2,701	17,400	0.16	A
I-10 WB On-Ramp at Jimmie Kerr	1 Lane Ramp	908	8,000	0.11	A
I-10 WB Off-Ramp at Jimmie Kerr	1 Lane Ramp	956	8,000	0.12	A
I-10 EB On-Ramp at Jimmie Kerr	1 Lane Ramp	1,486	8,000	0.19	A
I-10 EB Off-Ramp at Jimmie Kerr	1 Lane Ramp	2,085	8,000	0.26	A

Non-Site Traffic Forecasting

Background traffic growth is typically estimated by using the existing traffic volumes as a base and elevating them to analysis year levels by applying an estimated average annual growth rate typically defined through historical traffic volume trends or as projected through a transportation plan. From the 2006 CGSATS, daily volume graphics for the study area arterial roadways were identified for projected 2010, 2020, and 2030 network conditions. Volumes were compared for the projected 2010 and 2020 model years with the results indicating significant traffic volume increases throughout the entire City, including a calculated yearly growth projection along Jimmie Kerr Boulevard just west of I-10 at 6.7 percent per year (25,000 to 48,000 vpd). The current traffic volume level on this section of Jimmie Kerr Boulevard is identified to be 10,000 daily vehicles, 15,000 vehicles below 2010 estimated daily volumes.

From previous discussions with the City Traffic Engineer, the growth projections within the CGSATS report were developed near the peak of the economic growth cycle during the mid-2000's and over represent volume assumptions for the identified year. The I 8/Henness Change of Access Report has also identified a similar volume anomaly with traffic growth projections during this same time, noting some 2030 volume estimates within the I-10 Corridor Study, I-8 to Tangerine Road were high and considered to be representative of 2040 conditions.

Background Conditions, Non-Site Traffic - Opening Year

Although an actual year for initial site occupancy is unknown, a 2018 opening year has been assumed. This time period has only been utilized as a basis to grow existing traffic volume conditions to provide a conservative estimate of possible capacity constraints within the study area. For the purposes of this study, a simple 2% per year area-wide growth rate for 5 years (2013 to 2018) has been used resulting in a total growth of 10.4 percent. Figure 5 displays the daily roadway volumes and the AM and PM peak hour intersection turning movement estimates for the 2018 Background Condition. The 2\% per year growth rate is considered a reasonable estimate based on comparison of City provided volume data between 2008 and 2011 which indicated volume declines and discussions with the City that has identified limited construction which would have impacted volumes near the study area. Additional traffic volume from other potential site adjacent developments (the Station and Station II projects) have not been included as formal traffic impact studies have not been previously submitted and therefore may not be imminent. It is assumed that the City and/or ADOT will require any future development to mitigate or participate in correcting any traffic concerns prior to their opening, similar to this site.

Without near-term roadway improvements planned for the study area, the roadway network for the opening year background condition is the same as current conditions. The volume data shown in Figure 5 was substituted for the current year volumes and analyzed with intersection and roadway capacity results summarized in Table 3.

Table 3. Capacity Analysis Summary, Background Conditions (Opening Year)

Intersections

Intersection / Movement	2018 BACKGROUND							
	AM Peak				PM Peak			
	LOS	Delay	V/C	Queue	LOS	Delay	V/C	Queue
Int 1. Jimmie Kerr / Peart (S)	B	15.0			C	20.6		
EB Left	B	17.6		<50	B	15.6		<50
EB Thru/Right	B	11.5		301	C	21.8		300
WB Left	B	17.8		<50	B	15.8		<50
WB Thru/Right	C	18.0		395	C	22.9		285
NB Left/Thru/Right	B	12.2		<50	B	11.2		<50
SB Left	B	14.5		95	C	21.2		155
SB Thru/Right	B	11.8		<50	A	7.0		<50
Int 2. Jimmie Kerr / Cox / I-10 EB On/Off Ramps (MSS)								
EB Left	A	9.3		<50	A	8.8		<50
EB Thru/Right	-	-		-	-	-		-
WB Left	-	-		-	-	-		-
WB Thru/Right	-	-		-	-	-		-
NB Left/Thru/Right	-	-		-	-	-		-
SB Left/Thru	F	125.7	1.01	208	F	116.5	1.02	231
SB Right	B	13.0		<50	B	12.4		<50
Int 3. Jimmie Kerr / I-10 WB On/Off Ramps (MSS)								
EB Left	A	9.0		<50	A	8.7		<50
EB Thru	-	-		-	-	-		-
WB Thru/Right	-	-		-	-	-		-
SB Left	-	-		-	-	-		-
SB Right	B	14.7		<50	B	12.3		<50
Int 4. Jimmie Kerr / Tanger Dr (S)	A	5.4			A	3.5		
EB Left	A	1.7		<50	A	1.7		<50
EB Thru	A	1.7		102	A	1.8		70
WB Thru	A	7.5		468	A	4.7		168
WB Right	A	3.0		58	A	3.0		<50
SB Left	B	13.1		123	B	13.1		<50
SB Right	A	8.4		<50	A	8.4		<50
Int 5. Jimmie Kerr / Sunland Gin (MSS)								
EB Left	A	8.6		<50	A	8.2		<50
WB Left	A	8.2		<50	A	8.4		<50
NB Left/Thru	D	28.4		63	D	28.1		62
NB Right	B	11.2		<50	B	11.4		<50
SB Left/Thru/Right	C	22.7		<50	C	22.0		<50

[^0]Roadway Segments

Roadway Segment	Facility Type	Daily Volume	Facility Capacity	VIC	LOS
Jimmie Kerr West of Peart	2 Lane Arterial	10,300	17,400	0.59	C
Jimmie Kerr East of Peart	2 Lane Arterial	11,100	17,400	0.64	C
Jimmie Kerr East of I-10	2 Lane Arterial	11,100	17,400	0.64	C
Selma E of I-10	2 Lane Arterial	1,450	17,400	0.08	A
Selma W of I-10	2 Lane Arterial	1,850	17,400	0.11	A
Peart N of Jimmie Kerr	2 Lane Arterial	5,150	17,400	0.30	B
Peart S of Jimmie Kerr	2 Lane Arterial	1,350	17,400	0.08	A
Trekell S of Jimmie Kerr	2 Lane Arterial	3,000	17,400	0.17	A
I-10 EB On-Ramp at Jimmie Kerr	1 Lane Ramp	1,000	8,000	0.13	A
I-10 EB Off-Ramp at Jimmie Kerr	1 Lane Ramp	2,300	8,000	0.29	A
I-10 WB On-Ramp at Jimmie Kerr	1 Lane Ramp	1,650	8,000	0.21	A
I-10 WB Off-Ramp at Jimmie Kerr	1 Lane Ramp	1,050	8,000	0.13	A

Table 3 highlights indicate:

- Acceptable intersection operations at all Jimmie Kerr intersection locations except at the I-10 EB off-ramp. During both AM and PM peak hours, the southbound approach is estimated to operate at LOS F with a v/c ratio that exceeds 1.0, indicating the need for intersection improvements prior to 2018. Mitigation to correct the poor operation is to signalize the intersection, if meeting signal installation warrant criteria.
- All study area roadway segments are estimated to operate at LOS C or better.

Background Conditions, Non-Site Traffic - Build-out

The time-frame for site build-out is projected around year 2040, however, for the purposes of estimating traffic volumes on an existing roadway network, a 12-year horizon after site opening (year 2030) was assumed. This time period was considered based on potential modifications to ADOT facilities beyond this time that could impact volume and development patterns in the study area. To estimate growth from opening year to build-out year, a growth rate of 5.5 percent per year for 12 years (total increase of 90.1%) was used to project volumes. The daily volume projections on the adjacent roadway network for this time period are provided in Figure 6. The use of the 5.5 percent value is based on the reasoning below:

- Future year forecast volumes (2020 and 2030) within the 2006 CGSATA are currently projected for an extended time horizon than indicated. Horizon year assumptions also include volume projections and roadway network development that are not realistic for year 2030.
- The CGSATS identified a population growth of 4 percent and employment growth of 7 percent per year between 2020 and 2030, an average population and employment growth of 5.5 percent per year.
- The Kimley-Horn Change of Access Report noted freeway volume projections for the 2025 and 2030 no-build scenarios. The I-10 freeway segment north of Jimmie Kerr (closest to subject site) was calculated to increase by a rate of 5.6 percent per year for this time period (31% total growth, from 74,333 vpd to $97,440 \mathrm{vpd}$), a estimate of regional traffic growth.
- A 5 percent per year increase is a reasonable value to use for traffic projections in communities experiencing high growth characteristics.

Notes:
Volumes are a 90.1% increase (5.5% per year for 12 years) above 2018 background values shown in Figure 5.

Trip Generation

To estimate the site's trip generation characteristics, Trip Generation, Ninth Edition, published by the Institute of Transportation Engineers (ITE) 2012, was used to calculate average weekday daily total, AM peak hour, and PM peak hour number of trips. The data in this publication is categorized by land use types. The land use categories (LUC) that would be applicable to the proposed site in each phase were based on information received from the client:

- Land Use 1: Corporate Headquarters (LUC \#714) - 5,504,809 SF
- Land Use 2: Commercial, Shopping Center (LUC \#820) - 114,998 SF
- Land Use 3: Business Park (LUC \#770) - 673,873 SF
- Land Use 4: Garden Offices (LUC \#710) - 764,478 SF
- Land Use 5: General Light Industrial (LUC \#110) - 2,312,036 SF

Table 4 identifies the total trip generation characteristics estimated for the entire site based on use of the fitted curve equations to estimate the traffic associated with each land use.

Mode Split

Based on the location of the site, all trips are assumed to arrive via private transportation and no reduction for transit, bike, or walk modes assumed.

From the ITE description of each land use, no identification is provided as to the percentage of trips generated by truck traffic. Data contained within the ITE Trip Generation Handbook, $2^{\text {nd }}$ Edition, identifies an AM and PM truck generation rate (based on study in Fontana, California) for warehousing/light industrial land uses per 1,000 SF of gross floor area ranging from 0.01 to 0.05 . Since the light industrial land use generates about 1 trip per 1,000 SF, 5% of all peak hour trips from the Light Industrial land use will be assumed as trucks. This portion of site traffic is assumed to travel along the most direct route between the site and interstate freeway system and will have a different distribution pattern than non-truck vehicles.

Intra-site Traffic

Because of the expanse size of the site, there is an assumption of some multi-point travel internal to the site (i.e., private currier services, maintenance activity, car pool, food services, trips between other land use facilities). To account for this interaction, a 5\% assumption of total trips for the office/industrial land uses was assumed while a 15% assumption for the shopping center land use assumed. These trips are to be subtracted from the trip total to and from the site identified as intra-site trips, but accounted for along the internal roadway network.

Pass-by Traffic

Due to the nature of the subject site and low volume conditions of the area, no reduction for pass-by trips were assumed. It is assumed that all trips being generated by the subject site will be new traffic.

Table 4. Trip Generation Estimate

을릉00	Land Use	Office	Commercial	Bus. Park	Garden Office	Gen Lt. Indues	
	ITE Land Use Code	714	820	770	710	110	
	ITE Land Use Title	Corporate Headquarters	Shopping Center	Business Park	Gen Office Bldg	Gen Lt. Indust	
	Land Use Variable	1000 GFA	1000 GLA	1000 GFA	1000 GFA	1000 GFA	
	Variable Amount	5504.895	114.998	673.873	764.478	2313.036	
	Weekday	$\operatorname{Ln}(\mathrm{T})=0.97 \operatorname{Ln}(\mathrm{X})+2.23$	42.7	$\mathrm{T}=10.62(\mathrm{X})+715.61$	$\operatorname{Ln}(\mathrm{T})=0.76 \operatorname{Ln}(\mathrm{X})+3.68$	$\mathrm{T}=7.47$ (X)-101.92	
	AM Peak Hour	$\operatorname{Ln}(\mathrm{T})=0.96 \mathrm{Ln}(\mathrm{X})+0.60$	0.96	$\operatorname{Ln}(\mathrm{T})=0.97 \operatorname{Ln}(\mathrm{X})+0.49$	$\operatorname{Ln}(\mathrm{T})=0.80 \mathrm{Ln}(\mathrm{X})+1.57$	$\mathrm{T}=1.18(\mathrm{X})-89.28$	
	PM Peak Hour	$\operatorname{Ln}(\mathrm{T})=0.88 \mathrm{Ln}(\mathrm{X})+0.98$	3.71	$\operatorname{Ln}(\mathrm{T})=0.90 \mathrm{Ln}(\mathrm{X})+0.85$	$\mathrm{T}=1.12(\mathrm{X})+78.45$	$\mathrm{T}=1.43$ (X$)-157.36$	
ஃ๐	Weekday	50\%	50\%	50\%	50\%	50\%	
	AM Peak Hour	93\%	62\%	85\%	88\%	88\%	
	PM Peak Hour	10\%	48\%	26\%	17\%	12\%	
	Percentage of Intra-Site Trips ${ }^{(1)}$	5\%	15\%	5\%	5\%	5\%	
							Grand Total
	Weekday	1,977	737	394	308	859	4,275
	AM Peak Hour Inbound	331	11	39	43	98	522
	AM Peak Hour Outbound	25	6	7	6	14	58
	PM Peak Hour Inbound	27	31	11	8	19	96
	PM Peak Hour Outbound	234	33	31	39	139	476
	Weekday	37,560	4,174	7,479	5,852	16,318	71,383
	AM Peak Hour Inbound	6,280	58	731	815	1,859	9,743
	AM Peak Hour Outbound	472	36	128	110	252	998
	PM Peak Hour Inbound	495	174	203	151	360	1,383
	PM Peak Hour Outbound	4,462	189	577	737	2,633	8,598
告	Weekday	39,537	4,911	7,873	6,160	17,177	75,658
	AM Peak Hour Inbound	6,611	69	770	858	1,957	10,265
	AM Peak Hour Outbound	497	42	135	116	266	1,056
	PM Peak Hour Inbound	522	205	214	159	379	1,479
	PM Peak Hour Outbound	4,696	222	608	776	2,772	9,074
Notes:							
1 To account for portion of trip generation made between individual lots within the site as a whole							

Identified by the external trip values, build-out of site is projected to generate a grand total of approximately 71,400 daily, 10,750 AM peak hour, and 9,980 PM peak hour trips onto the adjacent street roadway network at full occupancy.

When the site generated trips (inbound plus outbound trips) are divided by the entire site development area, the average daily, AM and PM peak hour rates can be calculated, as shown below:

- Average Daily Trip Rate = 71,383 trips / 9.371 MSF = 7.62 trips / 1,000 KSF
- Average AM Pk Hr Rate $=10,741$ trips $/ 9.371 \mathrm{MSF}=1.15$ trips $/ 1,000 \mathrm{KSF}$ (15\% of daily trips)
- Average PM Pk Hr Rate $=9,981$ trips $/ 9.371 \mathrm{MSF}=1.07$ trips $/ 1,000 \mathrm{KSF}$ (14\% of daily trips)

Trip Distribution

Site Traffic Distribution

Distribution patterns for site traffic have been based loosely on a gravity model method, considering adjacent population centers divided by the square of the distance between the site and population center as identified from data generated from the US Census 2010 dataset (data contained in the Appendix). Percentages were then adjusted slightly to reduce the draw from the Casa Grande and Phoenix areas to increase demand to areas east, west and south as new local housing potential is realized with increased site employment opportunities. Figure 7 shows the estimated distribution percentage for traffic approaching and departing the site for build-out year, along with the total daily trip estimates for the subject site. These distribution percentages are similar to values used in the Henness Road / I-8 Traffic Interchange report conducted by Kimley-Horn.

Proposed Site Access and I nternal Site Circulation at Full Build Out

At some point in the future, freeway improvement projects are anticipated to occur in the study area that will impact travel patterns to and from the site. None of these projects are currently programmed, allowing the site to adjust land uses, intensities, and parcel sizes to best accommodate evolving tenant need and facilitate access to the surrounding roadway network.

Site Assignment

Figure 8 is provided to show the internal traffic assignment within the subject site. This has been calculated by identifying the daily site generated traffic volumes for selected parcel groupings, estimating the percentage of traffic to use each site access point based on Figure 7 distribution percentages, then estimating likely routes between the parcel grouping and access. Peak hour volumes on the roadways were estimated based on the trip generation data in Table 4 and calculated percentage of peak hour trips to daily trips then rounded. It can be assumed that a peak hour directional factor on these roadways can approach 70% due to access and land use locations.

Figure 9 schematically shows estimated access designs for the subject site at the major access points, internal roadway cross-section designs, and potential intersection control for internal site locations based on the information shown in Figure 8. It should be noted that a significant amount of unknown factors could modify conditions. With a total of 5 access points identified to accommodate 10,000 peak hour trips, traffic volumes will require channelized turn movements to help accommodate the desired demand and to minimize delays and queues. Additional access points may be considered and the potential for off-site parking/shuttle service could help reduce the overall number of onsite vehicles, if needed. Use of roundabouts (with by-pass channelization lanes) at the high volume access roadway/internal loop road intersections where turn movements are project to be high, may help reduce potential vehicle queue. The following items are noted regarding internal site access and circulation:

Note:
At full build-out the site it estimated to generate a total of 71,838 daily trips.

REGIONAL GATEWAY COMMERCE CENTER casa grande,az MASTER LANDUSE PLAN

Legend

PREPARED FOR: CASA GRANDE MOUNTAIN RANCH LIMITED PARTNERSHIP, GEORGE CHASSE - GENERAL PARTNER
PREPARED FOR
DATE: $6-20-13$
Sccale init $=400^{\circ}$ $\xrightarrow{200}$

GILMORE PARSONS
land design group

- High demand is identified for all site access points with a destination to/from the site's internal ring road. Because of these volumes, roundabouts are preferred to signalized intersections to help vehicle flow at these locations. It would be beneficial to permit right turn movements from channelized lanes. Adequate ROW should be reserved for internal main intersections to allow flexibility in future design.
- The ring road should be considered as a 6-lane facility in the future as inbound and outbound volumes dictate the need for a wide cross-section design to accommodate peak hour traffic demands in excess of 3,000 directional peak hour vehicles. The current site plan indicates a 110 -foot ROW for the ring road matching the City of Casa Grande minor-arterial cross-section design (4-lane roadway). This is an appropriate design for near-term conditions, but underground and above ground utilities and intersection designs should consider a potential 6-lane cross-section, if and when on-site volumes dictate widening need. Other future options, such as a converting the loop road to a one-way facility, could be an alternative to a six-lane future design.
- Estimated daily volumes along the internal roadways off of the loop road that exceed 3,000 daily vehicles (segments 8,9 , and 13) should be considered as eventual 4-lane facilities, depending upon driveway access locations. All other roadway segments are appropriate as 2-lane roads.
- Secondary internal intersections could be considered for eventual signal control to help left turn movements from the internal areas, provide the necessary gaps needed for trucks and allow for possible gaps in the traffic stream for more minor side street and driveway locations.
- Other minor/minor intersections can likely be accommodated via minor street or all-way stop control.
- Because drivers will mostly be repeat motorists, they will be able to adjust their ingress and egress route, if delays become persistent.
- The internal roadways appear to be properly located, however, the first roadway off of Cornman Road east of Henness Road (segment 12, at the approximate 660foot location) may have a very difficult time accommodating outbound left turn movements due to the high vehicle demand projected along Cornman Road in this area.
- Individual site access points should promote right-in/right-out movements as much as possible and parcels/lots provide joint access with access to the side street locations where practical.
- Left turn movements to/from the ring road should be limited to the major streets, if possible. Similarly, current access management concept should be continued, allowing only right-in/right-out movements near intersections, aligning driveways on opposite side of streets, and controlling the location of left turn movements. Right turn deceleration lanes to individual lots, especially at the corporate office locations should be provided considering the identified demand along the loop road.
- Sidewalks, bike lanes, roadway lighting, should be considered to help promote safety and alternate travel options.
- No parking/stopping along the loop road or entrance roadways to the site should be allowed.
- Additional traffic control considerations may be needed based on design characteristics of specific lots.
- Over one-half of all site generated traffic is to be generated from the 5.5 million square feet of corporate headquarter office land use. The three lots proposed for this land use are located at the southeast corner of the site. The ability to provide easy access to these lots, eliminating their vehicles from using the interior loop road will improve the overall operation of the site. Options to consider may be a new right-in/right-out Jimmie Kerr access point east of Cox Road serving only the parking areas of these three lots, moving/separating the land uses to other parts of the site, utilizing one of the site lots or non-site parcel adjacent to a direct access ramp for a dedicated parking area with bus shuttle service to the entire site.

Roadway Cross Sections

The following roadway cross-section have been identified from the City of Casa Grande 2006 CGSATS pertaining to 6-lane, 4-lane, and 2-lane designs. Widening at intersection approaches will be needed.

City of Casa Grande Principal Arterial - Typical Section (Internal Site Ring Road and Cornman Road Designs)

City of Casa Grande Minor Arterial - Typical Section (Potential West Access Road Design, Cox Road Access, \& I-8 WB Frontage Road Access)

City of Casa Grande Major Collector - Typical Sections

 (Low Volume Internal Road Design, segments 8, 9 \& 13)

City of Casa Grande Minor Collector - Typical Section
(Potential Site Internal Road Design, all other roads)

LOS Analysis at Site Build Out

Background Condition
Analysis was conducted for the build-out year along the study area roadway segments only and assuming no roadway network modifications. Intersection turn movement analyses were not conducted noting significant unknown roadway network variables that could influence its operating conditions, including the location/improvement of freeway access points, location of population growth areas and commercial developments, and ability for agencies or developer to pay for infrastructure improvements. The level of service conditions for the roadway segments are based on the City of Casa Grande roadway capacity values utilized earlier in the report and the daily traffic volumes shown
in Figure 6. The assumed number of lanes for the facility type may be different than existing conditions (all roadways are single lane directional facilities) to keep the LOS value at LOS D or better. Table 5 shows the facilities required to accommodate estimated daily volumes in an acceptable manner at build-out.

Table 5. Roadway Segment LOS, Background Conditions (Build-out)

Roadway Segment	Facility Type Assumption	Daily Volume	Facility Capacity	VIC	LOS
Jimmie Kerr West of Peart	4 Lane Arterial	19,600	34,800	0.56	C
Jimmie Kerr East of Peart	4 Lane Arterial	21,100	34,800	0.61	C
Jimmie Kerr East of I-10	4 Lane Arterial	21,100	34,800	0.61	C
Selma E of I-10	2 Lane Arterial	2,750	17,400	0.16	A
Selma W of I-10	2 Lane Arterial	3,500	17,400	0.20	A
Peart N of Jimmie Kerr	2 Lane Arterial	9,800	17,400	0.56	C
Peart S of Jimmie Kerr	2 Lane Arterial	2,600	17,400	0.15	A
Trekell S of Jimmie Kerr	2 Lane Arterial	5,700	17,400	0.33	B
I-10 EB On-Ramp at Jimmie Kerr	1 Lane Ramp	1,900	8,000	0.24	B
I-10 EB Off-Ramp at Jimmie Kerr	1 Lane Ramp	4,400	8,000	0.55	C
I-10 WB On-Ramp at Jimmie Kerr	1 Lane Ramp	3,100	8,000	0.39	B
I-10 WB Off-Ramp at Jimmie Kerr	1 Lane Ramp	2,000	8,000	0.25	A

The results of Table 5 indicate:

- Jimmie Kerr Boulevard will need widening to a minimum 4-lane arterial roadway by 2030.
- All other roadway segments can accommodate estimated 2030 background volumes at LOS C or better.

Total Traffic Conditions

Noting the daily, AM peak hour and PM peak hour site traffic generation previously indicated in Table 4, the distribution of site related trips as indicated in Figure 7, and identification of the site access points shown in Figure 8, the following can be concluded:

- To accommodate the projected 71,400 daily trips to be generated by the site, the total number of roadway network lanes needed to accommodate site traffic is approximately equal to 8 directional lanes ($71,400 \mathrm{vpd} / 8,700 \mathrm{vpdpl}=8.2$ directional lanes).
- When considering the directional aspects of the peak hour demand at the site access points, it is assumed one lane (turn or through) can accommodate 10% or 870 vehicles per hour per direction. Based on this assumption, the AM and PM peak hour demand would require approximately 11 approach lanes leading into the site ($9,743 \mathrm{vph} / 870 \mathrm{vph}=11.2$ lanes) and 10 lanes exiting the site ($8,598 \mathrm{vph}$ / $870 \mathrm{vph}=9.9$ lanes). Figure 9 identifies 12 inbound lanes and 8 outbound lanes. Channelization of turn movements may allow for a reduction in the estimated number of lanes.

Figure 10 has been developed to identify the future daily traffic volume conditions at site build-out assuming the site-related traffic volumes are placed onto the existing roadway network under two scenarios. The first scenario assumes two site access points, the west access roadway between Cornman and Peart and a Cox Road access. The second scenario also assumes two access points, the west access roadway and the I-8/Henness TI. Table 6 provides the roadway segment capacity analysis results below for each scenario under the total traffic condition (and excludes any additional or diverted background traffic as a result of the access roads and the Henness TI). It should be noted that the analysis does not consider the additional traffic potential from other site developments or diverted traffic potential.

Table 6. Roadway Segment LOS, Total Traffic Conditions (Build-out)
Scenario 1, West Access and Cox Road Access

Roadway Segment	Facility Type Assumption	Daily Volume	Facility Capacity	VIC	LOS
Jimmie Kerr West of Peart	6 Lane Arterial	41,020	52,200	0.79	D
Jimmie Kerr East of Peart	4 Lane Arterial	21,100	34,800	0.61	C
Jimmie Kerr East of I-10	6 Lane Arterial	31,990	52,200	0.61	C
Peart N of Jimmie Kerr	4 Lane Arterial	28,080	34,800	0.81	D
Peart S of Jimmie Kerr	6 Lane Arterial	31,160	52,200	0.60	C
Trekell S of Jimmie Kerr	2 Lane Arterial	12,840	17,400	0.74	C
I-10 EB On-Ramp at Jimmie Kerr	1 Lane Ramp	5,470	8,000	0.68	C
I-10 EB Off-Ramp at Jimmie Kerr	2 Lane Ramp	16,893	16,000	1.06	F
I-10 WB On-Ramp at Jimmie Kerr	1 Lane Ramp	15,593	16,000	0.97	E
I-10 WB Off-Ramp at Jimmie Kerr	1 Lane Ramp	5,570	8,000	0.70	C
West Site Access Rd. N of Cornmanna	4 Lane Arterial	28,560	34,800	0.82	D

Scenario 2, West Access and I-8/Henness Rd TI

Roadway Segment	Facility Type Assumption	Daily Volume	Facility Capacity	VIC	LOS
Jimmie Kerr West of Peart	6 Lane Arterial	30,310	52,200	0.58	C
Jimmie Kerr East of Peart	4 Lane Arterial	21,100	34,800	0.61	C
Jimmie Kerr East of I-10	4 Lane Arterial	21,100	34,800	0.61	C
Peart N of Jimmie Kerr	4 Lane Arterial	24,510	34,800	0.70	C
Peart S of Jimmie Kerr	4 Lane Arterial	24,020	34,800	0.69	C
Trekell S of Jimmie Kerr	2 Lane Arterial	2,600	17,400	0.15	A
I-10 EB On-Ramp at Jimmie Kerr	1 Lane Ramp	1,900	8,000	0.24	B
I-10 EB Off-Ramp at Jimmie Kerr	1 Lane Ramp	4,400	8,000	0.55	C
I-10 WB On-Ramp at Jimmie Kerr	1 Lane Ramp	3,100	8,000	0.39	B
I-10 WB Off-Ramp at Jimmie Kerr	1 Lane Ramp	2,000	8,000	0.25	A
West Site Access Rd. N of Cornman	4 Lane Arterial	21,420	34,800	0.62	C
Henness Rd. S of Cornman	6 Lane Arterial	49,960	52,200	0.96	E

West Access to Peart and Cox Road Access Only

West Access to Peart and Henness TI Access Only

Legend

3,570 - Daily Traffic Volume, Site Component
3,570 - Daily Traffic Volume, Background + Site

Comments pertaining to each scenario are listed below:

Scenario 1

- Allows traffic to distribute between the east and west portions of the site.
- Will require the West Access Road and Peart Road south of Jimmie Kerr to be 6lane facilities.
- Will require an additional I-10 access other than at Jimmie Kerr.
- No direct access to I-8 and the site is provided.

Scenario 2

- Permits site traffic to only enter/exit from the west side of the site.
- Will require an additional access point onto Henness Road in addition to the Henness/Cornman access.
- Will require an additional access point from I-8 westbound as over 35,000 daily trips (17,500 inbound) are anticipated to access the site from this direction. This volume can't be accommodated via typical interchange design.
- Can serve and promote development of the Casa Grande Mountain Ranch development south of I-8.

The results of the above analysis indicate two access points will not likely be able to accommodate site traffic at full build-out and will likely require both the Henness TI and the Cox Road access to accommodate traffic demand in an acceptable manner.

I ncremental LOS Analysis to Determine Near-Term Site Development Threshold Values

To determine the amount and type of roadway network improvements are needed based on an unknown amount of site development intensity for opening year, AM and PM peak hour intersection turning movement capacity analyses were conducted. Utilizing the nobuild opening year background traffic condition as a base scenario, site traffic was added to the intersection until an individual movement operated at LOS E (signalized) or at a volume to capacity ratio exceeded 0.80 (stop controlled). The added traffic, considered site generated trips, was converted to average site development area using the AM and PM peak hour average trip rates (calculated in the Trip Generation section of this report) for the entire site. These site development "trigger" values are identified as a percentage of total site development that can be constructed before for the next major transportation improvement is required. Only near-term analysis was considered appropriate as too many variables exist for the build-out year.

As part of the opening year background capacity analysis, the I-10 EB On/Off Ramp approach to Jimmie Kerr Boulevard is identified to operate in an unacceptable manner in both AM and PM peak hours. Any site development traffic added to this intersection will require improvements to this location.

Table 7 identifies the near-term "trigger" values for major roadway improvements dependent upon the level of site occupancy and peak hour estimates. Multiple scenarios are possible.

Table 7. Near-Term Development Trigger Points

Jimmie Kerr / Peart Intersection			
Scenario	Control Period	Site Occupancy Trigger	Needed Improvement
No-Build	PM Peak	up to 2.7% or 250,000 SF	None. Increase cycle length and modify green splits.
Alt 1	AM Peak	up to 4.5\% or 475,000 SF	Improve NB Peart S of Jimmie Kerr, single NBL, T, R lanes. P/P NBL \& SBL. Requires widening of UPRR crossing.
Alt 2	AM Peak	up to 11.0% or 1,032,000 SF	Spot widen E/W approaches, 2 EBT and 2 WBT lanes, dual WBL, 2 SB lanes S of Jimmie Kerr.
Alt 3	AM \& PM Peak	up to 14.5% or 1,360,000 SF	Three thru, 2 left, 1 right where needed - Over 14.5\% requires another Jimmie Kerr intersection. Improvements to the l-10 WB ramp / Jimmie Kerr intersection. 4-lane Jimmie Kerr cross-section.
Site Access Points			
West Site Access Roadway			
Scenario	Control	Site Occupancy Trigger	Needed Improvement
Opening Year		0\% or 0 SF	Jimmie Kerr / l-10 EB intersection
Alt A1	2-lane access roadway peak hour directional capacity, ~ 1050/ln	up to 11.0% or 1,032,000 SF	Assumes acceptable operation at Jimmie Kerr / I-10 EB intersection
Alt A2	4-lane access roadway peak hour directional capacity, ~ 1200/ln	up to 24.9% or 2,330,000 SF	Requires Alt 2 improvements to Jimmie Kerr/Peart intersection, l-10 WB ramp/Jimmie Kerr intersection and a second Jimmie Kerr intersection (Selma Highway) for site traffic. Maximum capacity of single site access point for traffic to/from north.
Alt A3	4-lane access roadway peak hour directional capacity, ~ 1200/ln	up to 26.8% or 2,516,000 SF	Maximum capacity of single site access point for a combination of traffic to/from North and I-8/Henness TI.
Alt A4	6-lane access roadway peak hour directional capacity, - 1600/ln	up to 49.6\% or 4,650,000 SF	Assumes acceptable operation at Jimmie Kerr and I10 ramps, requires second Henness site access.
Cox Road Site Access			
Alt B	4-lane access roadway peak hour capacity, ~ 1000/In	Can accommodate up to 20.7% or 1,940,000 SF	Assumes acceptable signalized intersection of Jimmie Kerr with the I-10 ramps and improved UPRR crossing
1-8 / Henness Road TI			
Alt C	Single Lane On-Off Ramps	Can accommodate up to 27.4\% of $2,570,000 \mathrm{SF}$	Construct TI, requires additional Henness Road access to site other than at Cornman

The above table indicates the following major trigger points:

1. Improvements to the Jimmie Kerr/I-10 EB intersection are require as 2018 background conditions identify LOS F conditions for the eastbound off-ramp left turn movement in both the AM and PM peak hours.
2. Site occupancy can reach 11.0% of total site build-out with spot improvements to the Jimmie Kerr / Peart Road intersection and improvement to the Peart Road UPRR crossing assuming only the 2-lane west access roadway.
3. Site occupancy can reach 14.5% of total with the above improvements, widening of Jimmie Kerr to a 4-lane facility, improvements to the Jimmie Kerr/I-10 WB On-Off intersection, and widening of the west access roadway to a 4-lane cross section.
4. Site occupancy can reach 24.9% of total with the above improvements and another Jimmie Kerr intersection from the west access road for site traffic to access. This assumes the Jimmie Kerr/I-10 intersections can accommodate traffic demand and no I-8/Henness interchange.
5. Site occupancy can reach 26.8% of total for a single site access point at Cornman/Henness Road with the I-8/Henness TI. Depending upon when this TI is operational, this may or may not require the list of improvements along Jimmie Kerr that were previously identified.
6. Site occupancy could potentially reach 49.6% based on a 6-lane Henness Road/west access road design. To accommodate this traffic demand, a second Hessness Road access will be required.
7. A Cox Road access could accommodate up to 20.7% of site occupancy.
8. The I-8/Henness TI could accommodate up to 27.4% of site occupancy.

Overall, it is estimated that the single west access point could accommodate a maximum of about 50% of site occupancy prior to another major site access being required.

Use of peak hour traffic conditions as opposed to daily capacity values are considered to be a more conservative approach to the trigger values that have been developed. Conditions could be re-evaluated upon more detailed information involving the site opening year, adjacent developments, on-site tenant characteristics, and changes to roadway volumes and conditions.

Conclusions and Recommendations

The following bullet items highlight the conclusions of this study based on the information presented and interpretation of the analyses performed:

- Previous City and ADOT recommends have identified no improvements are planned for any study area facilities that are not developer driven or developer paid.
- Assuming a 2% per year background growth rate for 5 years, all study area roadway segments are anticipated to operate at LOS C or better for the opening year non-site background conditions. Only the stop controlled I-10 eastbound offramp left turn movement at Jimmie Kerr is expected to operate at LOS F during both AM and PM peak hour conditions for this time period.
- Adjacent development projects within the study area (the Station and the Station II developments) have not been considered as part of the background traffic volumes. New developments are assumed to mitigate any poor operational roadways conditions, or at a minimum, contribute to roadway improvement costs within the study area.
- At build-out, the $9,371,000 \mathrm{SF}$ of site development is estimated to generate a total of 71,383 daily trips, 10,741 AM peak hour trips and 9,981 PM peak hour trips onto the adjacent roadway network based on the site's land use assumptions. Over half of all trips generated are projected from the office headquarter land use located in the southeast corner of the site. The ability to manage the vehicles from these parcels will have a significant impact on the operation of the internal loop roadway.
- To accommodate site traffic at build-out, a total of 5 access points are being considered. At site opening, only the west access roadway is planned. The introduction of the other four access points is dependent upon development intensity, timing, and other considerations that are not known at this time. In all, the five access points are anticipated to include a total of 11 inbound lanes and 8 outbound lanes.
- To accommodate traffic projections at build-out, the site's internal loop roadway should be considered as an eventual six-lane facility as peak hour traffic volumes could exceed 3,000 directional vehicles. The central north/south connector roadway and potential future direct access ramp into the site from the I-8/Henness westbound off-ramp may require construction with a 4-lane cross-section. All other site roadways can be constructed as two-lane facilities.
- Site access to and from the adjacent roadway network should consider use of channelized movements to minimize delays and queues associated with signalized operations. It may be beneficial to provide sufficient right-of-way along the loop road to accommodate roundabouts with by-pass lanes to facilitate movements, specifically at the intersections with the site access roadways.
- The developer is to construct a west 2-lane access roadway between the site's Cornman/Henness access point and Peart Road for opening year. This two-lane roadway can accommodate up to 11% of site occupancy based on anticipated peak hour demand (and could potentially accommodate up to 22% based on daily capacity values). To accommodate the 11%, improvements will be required at the Jimmie Kerr/Peart and Jimmie Kerr/I-10 intersections along with UPRR highway grade crossing improvements on Peart Road. Site occupancy above this value will require a 4-lane access roadway and additional roadway network improvements. The single west site access point could accommodate up to 26.8% of total site occupancy before another site access is required.
- A 4-lane site access at Cox Road, intersecting at the Jimmie Kerr/I-10 eastbound On-Off Ramp intersection, could accommodate up to 20.7% of total site development. To advance this access point, widening/improvement of the UPRR highway-grade rail crossing and significant improvements to the Jimmie Kerr intersections with the I-10 ramps will be needed.
- The I-8/Henness traffic interchange is identified to accommodate up to 27.4% of total site development under typical single lane ramp considerations. The construction of the Henness TI will also help promote development of the Casa Grande Mountain Ranch development south of I-8.

The following recommendations are presented.

- Improvements to the Jimmie Kerr / I-10 Eastbound On-Off Ramp intersection is required to accommodate site traffic and existing non-site traffic movements at site opening. The extent of improvements should consider the potential of a site access at Cox Road, timing of the I-8/Henness traffic interchange, and site development intensity.
- Trigger thresholds have been identified at opening year for the following levels of total site occupancy (excludes I-10/Jimmie Kerr intersection considerations):
o Up to 2.7% - Requires no roadway improvements.
o Up to 4.5% - Requires improvement to the northbound Peart Road approach to Jimmie Kerr, signal phasing changes, and improvement / widening of the UPRR rail crossing at Peart Road.
o Up to 11.0% - Requires spot widening of the Jimmie Kerr Boulevard approaches at Peart Road to two lanes, dual westbound left turn lanes, and southbound Peart Road widening to accommodate two lanes.
o Up to 14.5% - Requires further/ultimate widening/improvement to the Jimmie Kerr / Peart Road intersection, requires Jimmie Kerr to be widened to a 4-lane roadway between Peart and the I-10 ramps, improvement of the I-10 Westbound On-Off ramp intersection with Jimmie Kerr, and widening of the west access road to a 4-lane design.
o Up to 24.9% - Requires a second west access road intersection to Jimmie Kerr and acceptable access to/from I-10.
o Up to 26.8% - Requires the I-8/Henness interchange and is the maximum site occupancy that can be accommodated by the single site access point planned for opening year.
o The west access roadway could potentially accommodate up to 49.6% of total site occupancy, but requires a second site access. The I-8/Henness TI is estimated to accommodate up to 27.4% of site development and a Cox Road access is estimated to accommodate up to 20.7% of site traffic.
- As more details become evident for opening year, including specific tenants and their land uses, building layout designs, and site access needs, traffic impact studies should be prepared for each construction phase. This will provide more detail into specific improvements that are required along with the timing of such improvements.

APPENDIX

Master Circulation Study

PM Peak Hr Tolet

Start Date: 212401911
Starl Time: $12.00: 00 \mathrm{AM}$
Sile Coda: 004
Location i: $1-10$ \& SR-84 S8 Of Ramp

PM Poak Hr
PM Poak Hr Fola:

PM Pans As
Pbs Peak Mr Total

File Name: Start Date: Sinct Time: Sita Cada: Locatton 1:	$\begin{aligned} & 51-1019-182 \\ & 311 / 2011 \\ & 12.00 .00 \mathrm{AM} \\ & 182 \\ & \text { Selma Hwry } \end{aligned}$	ast dide				
	Tme	Esst	Hotarly Total		Houry Total	Total
	0.00 .00	0		2		2
	0:15:00	0		1		9
	0.30:00	1		1		2
	0.4500	2	3.	0	1	2
	1000:00	0		0		0
	1:175:00	\square		2		3
	1:30:00	1		0		1
	1.45:00.	0	2	0	2	0
	2:0000	- 1		0		
	2:15:00	0		1		,
	23000	1		1		2
	$2.45: 00$	0	2.	0	2	0
	3.00:00	- 1		2		3
	315.00	1		1		2
	33.309	\square		0		1
	3:45:00	- 1	4	1	4.	2
	4.0000	1		2		3
	4115:00	2.		4		6
	4:30.00.	0		4		4
	4:45:00	2	5	2	12	4
	5:00.00	4		5		10
	6.1509	6		4		10
	553000	1		4		5
	5:46:00	2.	43	5	19	7
	6.00 .00	5.		8.		13
	6.1500	14.		6.		20
	6.30:00	9		13		22
	6.4500	14	42	15	42	29
	7:00.00.	6.		31		17
	71500	14		19		33
	73000	11		14		25
	7.4500	5	38	15	60	21
	8:0000	7		15		22
	8:15.00	7		12		18
	8.30 .00	9		15		24
	8.45.00	2	25	17	59	19
	9.00:00	7		9		18
	0:15:00	$\square \quad 4$		12		15
	$9.30 \cdot 00$	8		13		21
	0.4500	8.	27	11	45	19
	1000:00	10		5		15
	10:1500	7		7.		14.
	10,30.00	5		8		13
	10.45 .001	8	30	11	31	19
	1100:00	5		9.		14
	11:15:00	8.		5.		14
	11:30.00	6.		7		13
	11/45:00	3.	23	8	28	11
	12:00:00	9		8		17
	12.15.00	6.		7		13
	12:30.00	7		8		15
	12:45:00\|	7	29	10	33	77
	13:00:00	17		10.		27
	1315500	12		11		23
	13:30.00	6		10		16
	13:45:00	8.	43	13.	44.	21
	14:00:00	11.		18		29
	14:15:00	9		11		20
	14.30:00	14		12		25
	14.45 .00.	18	52	16	57	34
	15:00:00	14		10		24
	15:15:00	10		16.		26
	15:3000	11.		15.		26
	15.45 .00	19	54	15	50	34
	16:00:00	7		13.		20
	16:15:00	17		19		30
	18,30:00	17		13		30
	16:45:00	20	61	15.	60	35
	17:00:00	18		11.		30
	17715:00	16		10		26
	1730:00	12		9		21
	17:45:00	19.	66	7	37	26
	1800000	11		8		19
	$18.15 \cdot 00$	7		6.		13
	18,30.00	11.		5		17
	18:45:00]	9	38	6	26	15
	19,00:00	8		6		14
	18.1500	4		4		8
	1930000	5		3		8.
	19.45:00	- 2	15	6	19	8
	20,00:00	7		3		10
	20.1500	5		2		7
	20.30 .00	4		1		5
	20.45:00	2	18	2	8	4
	21:00:00	1.		3		4
	21:15:00.	9		3		12
	21:30:00	3		3		6
	21:45:00.	2	15.	0	9	2.
	22:00:00	4		1		5
	22:15:00	3		3		6
	22:30:00	1		1		2
	22:45:00.	4	12	2	7	6
	2300.00	1		3		H
	23:15:00	1		4		5
	23:3000	- 1		1		2
	23:45:00	1	4.1	0	8	1
24 Hr . Totais		623		673		1296
AMP Peak hir		6:45		7:15		
AM Poak Hr To		${ }^{45}$		${ }_{6} 6$		

PM Peak Hr	16:55	$15: 30$
PM P*ak Hz Total	73.	62

$\begin{array}{lcc}\text { PM Pask } \mathrm{Hf} & \text { 16:15 } & \text { 14:45 } \\ \text { PM Praik hi Tolal } & 80 & 75\end{array}$

$$
\begin{align*}
& \text { PM Poak Hr } \\
& \text { PM Poak Hr }
\end{align*}
$$

$$
\begin{aligned}
& \text { PM Poak Mr } \\
& \text { PM Peak } H \text { H T }
\end{aligned}
$$

PM Poak Hi	ta:00	13:00
PM PGak H: Totai	67	48

File Name: Start Deta: SLan Time: Sifa Coda: Location 1;	$\begin{aligned} & 11-1019-188 \\ & 3 \cdot 1 / 2019 \\ & 12: 00.00 \mathrm{AM} \\ & \text { 188 } \\ & \text { Jimmie Ker } \mathrm{a} \end{aligned}$	and west of P	Pearl 8 d.			
	Time	East	Hourly Fotal		Houry Totai	Tolat
	0.00001	8		19		18
	0.15 .00	9.		3		12
	0.30 .60	11		3		14
	0.45:00	5	34	5	20.	10
	1:0000	7		4		11
	1:15,00	7		5		12
	1:3000	3.		6		9
	1:45.00	3	20	1	16	4
	2:0000	4		2		6
	2.15.00	6.		2.		,
	2:30.00	2		10		12
	2:45:00	2.	14	7	21	9
	3:00.00.	5.		4		8
	3.15.00	3		10		13
	3,30:00	3.		19.		22
	3.4500	7	18	5	36	12
	8:00:00	5		10		16
	44500	11		23		34
	430.00	13.		24		37
	4.4500	18.	46	18	75	34
	5:00:00	21		21.		42
	5.15:00,	27.		34		61
	5:30:00	25		35.		60
	5.45:00	17	90	37	127	54
	8:00:00	21		39		60
	8:15:00	49		56		105
	6:30:00	52		55		107
	6.45:00	53	175	55	205	108
	7.0000	53.		84.		137
	2:15:001	63.		94		157
	7.3000	89.		110		189
304	7:95:00	79 :	\% 284	85	573	964
	8.00 .00	73		58.		131
	81500	514		66		117
	8:30:00	80		78.		\%
	8.45 .00	63	247	73	275	136
	800.00	57		65		123
	915:00	58		73		131
	9:30:00	45		71		116
	9.45:00	49	200	60	270	109
	10:00:00	88		56		154
	10:15:00	B0		69		149
	10:30.00	67		75		182
	104500	48	303.	62	272	110
	1:0000	77		95.		172
	11115.00	70		99		169
	1130.00	79		78		157
	$11: 4500 \mathrm{y}$	89	315.	78	351	168
	12.00 .001	88		108		198
	12.55:00\|	70		81		157
	1230009	93		77		170
	12:45:00	79	330	81	357	170
	12.00.09	86		81		167
	1315.00	68		73		159
	13:30:00	80		89		169
	13.45.00.	91	343	95	339	185
	14.0000	93		96		188
	14:15:09	107		114		215
	14:30:00	106		92		198.
	14.45:00.	103	403	96	389	199
	150000	129		106		235
	15:15:00	112		88		210
	\$5:30.00	177		$11 / 3$		230
	15:45:00	101	459	97	414	198
	160000	83		101		189
	16:15:00	81.	-	101		192
	$16: 3000$	97.	-	97		184
	16.45:00.	103) ${ }^{\text {+ }}$	+ 368	77	376	180
7	17:00:00	86		88		184
	17:15:00	80		74		154
	17:30.00	66		77		143
	17.45:00	79	32.1	71	310	150
	18:00:00	81		85		169
	18.75:001	53		59		112
	1830:00	55		56		111
	18:45:09	62	251	46	249	108
	18000.00	51		47		98
	10,15:00	38		36		74
	18:30:00	44.		35		79
	19:45:00	36	$\underline{17}$	27	145	65
	20:00.00	40		22		62
	2015000	38		28		66
	20:30:00	36		$\underline{27}$		63
	20:45:00	29	143	26	303	65
	2100000	35		14		48
	21:15:00	24		21		45
	21:30:00	15		21		36
	21950.01	17	81	19	75	36
	22:00:00	18.		17.		35
	22:15:00	25		70		35
	22:30:00,	8		4		26
	224500	- 18	$\underline{-10}$	10	54	28
	23:00:00	16		10		26
	23:35:00\|	-17		17		34
	23.3000	16		12		28
	23:45:00	15	64	13	52	28
24 Mr . Touls		4770		4814		8684
as Pask Mr AM Pask Hr T		$\begin{gathered} 11: 45 \\ 340 \end{gathered}$		$\begin{aligned} & 7: 00 \\ & 373 \end{aligned}$		

File Nama: Stort Dato: Start Time: Sits Code: Location 1:	$\begin{aligned} & 11-1019-072 \\ & 31 / 2011 \\ & \text { i2:00:00 AM } \\ & 072 \\ & \text { Peart Rd soutt } \end{aligned}$	Wh of Erioy				
	Trime	North	Hourly Total	Souts	Houriy Total	Total
	0,00:00	1		1		2
	$0.15: 00$	1		2		3
	$0: 30 \cdot 0$	3		3		5
	04500	1	\| 6	2	8	3
	1:00:00	- 2		1		3
	115500	3		2		5
	1:30:00	0		0		0
	1.4500	2	7.	1	4	3
	2:00.00	1		1		2
	2:15.00	2		1		3
	2:30:00	0		2		2
	2:45:00	0	3.	3	7	3
	3.00.00	1		0		1
	3.15:00	\square		0		4
	3:30:00	- 1		0		
	3.4500	- 4	10	1	1	5
	400000	3		1		4
	415.00	8		3		19
	4:30.00	4		4		8
	4:45:00	3	18	3	11	6
	5.00 .001	$\underline{9}$		0		9
	5.1500	7.		12		18
	535000	13		15		28
	5.45:00	7	36	8	36	15
	0:00:00	21		13		34
	8:15:00	15		20		35
	6:30.00	22		21		43
	6:45:00	23	81	25	79	48
	7:00:00	40		19.		50
	7:15:00	43		32		75
	73000	40		24		64
	74500	31	154	34	109	65
	8.0000	35		18		53
	8:15:00	45		20		85
	$8: 3000$	29.		26		55
	8.45001	53	152	24	88	77
	0.0000	33.		29		62
	915:00	37.		47		84
	930001	44		27		71
	8.45 .09	30	14.4	42	145	72
	10,00:00	39		35		74
	10.15.00	33.		42		75
	103000	28		24		52
	10:45.00	24	124	28	129	52
	110000	29		32		81
	11.15:00	22		30		52
	11:30:00	20		33		53
	11:45:00	25	86	26	121	51
	12:00.00	41		53		64
	12:15:00.	33		39		78
	12:30:00	44		55		39
	124500	45	189	36.	186	84
	13:00:00	40		57.		97
	1315:00	36		39		75
	13.3000	40		56		96
	13.4500	32	148	52	204	84
	14.00:00	44		50.		94
	14.15:00	49		48		87
	14:3000	39		46.		85
	144500	38	170	53	187	91
	15:00.00	46		57		103
	15.15 .00	63		34		117
	15:3000	48		42.		80
	15:45:00	44	201	50.	203	94
	16:00:00	40		53		93
	15515:00	58		62		120
	16:30:00	48		46		95
	16.45:00.	31	178	53	214	84
	1700:00	33		65		95
	17:15:00	35		53		88
	17:30:00	43.		43		86
	127400	32	143	36	187	68
	18.00.00.	20		48		66
	18,15:00	24		33		57
	18.30 .00	25		36		61
	18.4500	27	${ }^{86}$	28	143	55
	18.0000	28		33		62
	19.15:00	-14		44		58
	19:30:00	9		24		33
	19.4500	14	65	20	121	34
	20.0000	14		12		28
	20.15.00	13		23		36
	20.30600	8		29		28
	20.45.00	${ }_{6} 6$	41	12	77	28
	21:00:00	13		12		25
	21.15 .00	3.		14		17
	2130.009	14.		14		28
	21:45:00	8	38	17	57	25
	22:00.00	4		11		15
	22:15:00.	8		11		19
	22:30:00	8		6.		12
	22:4500	-	22	5	33	8
	2300:00	7		7		14
	23:15:00	- 3		4		
	23.3000	$\underline{-5}$		8		13
	23.45.00\|	4	191	3	22	
24 Hr . Totais		2132		2392		4524
AM Poak Hr		${ }^{8} / 45$		11:45		
AM Foak Hr To		\$67		173		

File Name: 14-1019-139
Slant Date: 2.232011
Star Tina: 12.00 .60 am
Site Code: 739
Location 1: Jimmie Ker Bivd, west of Sunland Gin Red.
263

$\begin{array}{lll}\text { PM Pasik Hr } \\ \text { PM Peah Mr Total } & \begin{array}{c}\text { 16:45 } \\ 594\end{array} & \begin{array}{c}15: 00 \\ 468\end{array}\end{array}$

YEAR 2020 NEEDS
NETWORK PERFORMANCE
AND VOLUME ESTIMATES
Level of Service

- LOS A－B
- LOS C
－LOS D
- LOS E
XX－Das F
（thousands）
七－9 ヨyก૭I」

YEAR 2030 NEEDS
NETWORK PERFORMANCE
AND VOLUME ESTIMATES

	$\begin{gathered} \infty \\ 1 \\ \dot{\jmath} \\ 0 \\ 0 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \text { ש } \\ \text { © } \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	

Arizona Cities by
 Population

Get a list of Arizona cities by population. The data are from the US Census 2010 dataset. Below are Arizona cities ranked 1 through 451. You can copy and paste this list directly into your favorite spreadsheet program. Don't you just adore lovely numbers listed nicely in columns \& rows? We do!

Arizona Cities by Population Rank	City	Population
1	Phoenix	1,445,632
2	Tucson	520,116
3	Mesa	439,041
4	Chandler	236,123
5	Glendale	226,721
6	Scottsdale	217,385
7	Gilbert	208,453
8	Tempe	161,719
9	Peoria	154,065
10	Surprise	117,517
11	Yuma	93,064
12	San Tan Valley	81,321

13	Avondale	76,238
14	Casas Adobes	66,795
15	Flagstaff	65,870
16	Goodyear	65,275
17	Lake Havasu City	52,527
18	Buckeye	50,876
19	Catalina Foothills	50,796
20	Casa Grande	48,571
21	Sierra Vista	43,888
22	Maricopa	43,482
23	Oro Valley	41,011
24	Prescott	39,843
25	Bullhead City	39,540
26	Prescott Valley	38,822
27	Sun City	37,499
28	Apache Junction	35,840
29	Marana	34,961
30	El Mirage	31,797
31	Kingman	28,068
32	Drexel Heights	27,749
33	Oueen Creek	26,361
34	Fortuna Foothills	26,265
35	Florence	25,536
36	San Luis	25,505
37	Sahuarita	25,259
38	Sun City West	24,535
39	Fountain Hills	22,489

40	Anthem	21,700
41	Green Valley	21,391
42	Nogales	20,837
43	Rio Rico	18,962
44	Douglas	17,378
45	Tanque Verde	16,901
46	Eloy	16,631
47	Flowing Wells	16,419
48	Payson	15,301
49	New River	14,952
50	Sierra Vista Southeast	14,797
51	Fort Mohave	14,364
52	Somerton	14,287
53	Sun Lakes	13,975
54	Paradise Valley	12,820
55	Tucson Estates	12,192
56	New Kingman-Butler	12,134
57	Coolidge	11,825
58	Verde Village	11,605
59	Cottonwood	11,265
60	Camp Verde	10,873
61	Chino Valley	10,817
62	Show Low	10,660
63	Arizona City	10,475
64	Vail	10,208
65	Gold Canyon	10,159
66	Sedona	10,031

67	Winslow	9,655
68	Saddlebrooke	9,614
69	Safford	9,566
70	Picture Rocks	9,563
71	Valencia West	9,355
72	Tuba City	8,611
73	Golden Valley	8,370
74	Catalina	7,569
75	Globe	7,532
76	Page	7,247
77	Tolleson	6,545
78	Wickenburg	6,363
79	Youngtown	6,156
80	Village of Oak Creek (Big Park)	6,147
81	Avra Valley	6,050
82	Corona de Tucson	5,675
83	South Tucson	5,652
84	Snowflake	5,590
85	Three Points	5,581
86	Bisbee	5,575
87	Guadalupe	5,523
88	Litchfield Park	5,476
89	Williamson	5,438
90	Doney Park	5,395
91	Summit	5,372
92	Paulden	5,231
93	Kayenta	5,189

| | | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Splits and Phases: 1: Peart Rd \& Jimmie Kerr Blvd

	4		\leftarrow	4	\checkmark	\downarrow
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	\%	\uparrow	\uparrow	F	\%	「
Volume (vph)	11	332	594	11	11	11
Satd. Flow (prot)	1703	1792	1792	1524	1703	1524
Flt Permitted	0.310				0.950	
Satd. Flow (perm)	556	1792	1792	1524	1703	1524
Satd. Flow (RTOR)				12		12
Lane Group Flow (vph)	12	369	660	12	12	12
Turn Type	pm+pt	NA	NA	Perm	NA	Perm
Protected Phases	7	4	8		6	
Permitted Phases	4			8		6
Total Split (s)	8.0	20.0	20.0	20.0	20.0	20.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Act Efft Green (s)	29.4	32.6	31.2	31.2	5.8	5.8
Actuated g/C Ratio	0.83	0.92	0.88	0.88	0.16	0.16
v/c Ratio	0.02	0.22	0.42	0.01	0.04	0.05
Control Delay	1.7	1.7	7.5	3.0	13.1	8.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	1.7	1.7	7.5	3.0	13.1	8.4
LOS	A	A	A	A	B	A
Approach Delay		1.7	7.4		10.7	
Approach LOS		A	A		B	
Queue Length 50th (tt)	0	0	0	0	2	0
Queue Length 95th (ft)	4	54	\#280	6	11	9
Internal Link Dist (tt)		12631	390		833	
Turn Bay Length (tt)	325			125		50
Base Capacity (vph)	592	1657	1582	1347	773	698
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.02	0.22	0.42	0.01	0.02	0.02
Intersection Summary						
Cycle Length: 48						
Actuated Cycle Length: 35.3						
Control Type: Semi Act-Uncoord						
Maximum v/c Ratio: 0.42						
Intersection Signal Delay: 5.4				Intersection LOS: A		
Intersection Capacity Utilization 41.3\%				ICU Level of Service A		
Analysis Period (min) 15						
\# 95th percentile volume exceeds capacity, queue may be longer.						
Queue shown is maximum after two cycles.						

Splits and Phases: 5: Jimmie Kerr Blvd \& Tanger Dr

2: Cox Rd/I-10 EB On/Off Ramps \& Jimmie Kerr Blvd

Intersection												
Intersection Delay, s/veh	18.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	82	251	0	0	556	11	0	0	0	137	0	33
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	Stop
Storage Length	250	-	-	250	-	-	-	-	-	-	-	50
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	80	85	90	90	90	80	90	90	90	85	90	80
Heavy Vehicles, \%	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	102	295	0	0	618	14	0	0	0	161	0	41

Major/Minor	Major1	Major2				Minor1		Minor2				
Conflicting Flow All	632	0	0	295	0	0	1125	1132	295	1125	1125	625
Stage 1	-	-	-	-	-	-	500	500	-	625	625	
Stage 2	-	-	-	-	-	-	625	632	-	500	500	-
Follow-up Headway	2.254	-	-	2.254	-	-	3.554	4.054	3.354	3.554	4.054	3.354
Pot Capacity-1 Maneuver	932	-	-	1244	-	-	179	200	735	179	202	478
Stage 1	-	-	-	-	-	-	546	537	-	466	471	
Stage 2	-	-	-	-	-	-	466	468	-	546	537	
Time blocked-Platoon, \%		-	-		-	-						
Mov Capacity-1 Maneuver	932	-	-	1244	-	-	150	178	735	164	180	478
Mov Capacity-2 Maneuver	-	-	-	-	-	-	150	178	-	164	180	-
Stage 1	-	-	-	-	-	-	486	478	-	415	471	-
Stage 2	-	-	-	-	-	-	426	468	-	486	478	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	2.4	0	0	110.4
HCM LOS		A	F	

Minor Lane / Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)	0	932	-	-	1244	-	-	173	478
HCM Lane V/C Ratio	+	0.11	-	-	-	-	-	1.011	0.058
HCM Control Delay (s)	0	9.339	-	-	0	-	-	125.7	13
HCM Lane LOS	A	A			A		F	B	
HCM 95th \%tile Q(veh)	+	0.369	-	-	0	-	-	8.221	0.183

Notes
~ : Volume Exceeds Capacity; \$: Delay Exceeds 300 Seconds; Error : Computation Not Defined

Intersection													
Intersection Delay, slveh	4.8	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Movement	1	278	79	79	497	1	60	1	179	1	1	1	
Vol, veh/h	0	0	0	0	0	0	0	0	0	0	0	0	
Conflicting Peds, \#hr	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
Sign Control	-	-	None										
RT Channelized	-	-175	250	-	-	-	-	70	-	-	-		
Storage Length	200	-	175										
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-	
Grade, $\%$	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	80	80	90	90	85	90	85	90	90	90	
Heavy Vehicles, $\%$	6	6	6	6	6	6	6	6	6	6	6	6	
Mumt Flow	1	309	99	99	552	1	71	1	211	1	1	1	

Major/Minor	Major1	Major2				Minor1		Minor2				
Conflicting Flow All	553	0	0	309	0	0	1062	1062	309	1062	1061	553
Stage 1	-	-	-	-	-	-	311	311	-	750	750	
Stage 2	-	-	-	-	-	-	751	751	-	312	311	
Follow-up Headway	2.254	-	-	2.254	-	-	3.554	4.054	3.354	3.554	4.054	3.354
Pot Capacity-1 Maneuver	997	-	-	1229	-	-	198	220	722	198	220	525
Stage 1	-	-	-	-	-	-	691	651	-	397	413	
Stage 2	-	-	-	-	-	-	397	413	-	690	651	
Time blocked-Platoon, \%		-	-		-	-						
Mov Capacity-1 Maneuver	997	-	-	1229	-	-	184	202	722	131	202	525
Mov Capacity-2 Maneuver	-	-	-	-	-	-	184	202	-	131	202	
Stage 1	-	-	-	-	-	-	690	650	-	397	380	
Stage 2	-	-	-	-	-	-	363	380	-	487	650	

Approach	EB	WB	NB	SB
HCM Control Delay, s	0	1.2	19.8	22.7
HCM LOS		C	C	

Minor Lane / Major Mvmt	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	292	722	997	-	-	1229	-	-	207
HCM Lane V/C Ratio	0.486	0.194	0.001	-	-	0.08	-	-	0.016
HCM Control Delay (s)	28.4	11.2	8.615	-	-	8.185	-	-	22.7
HCM Lane LOS	D	B	A			A		C	
HCM 95th \%tile Q(veh)	2.502	0.717	0.003	-	-	0.262	-	-	0.049

Notes

~ : Volume Exceeds Capacity; \$: Delay Exceeds 300 Seconds; Error : Computation Not Defined

	\rangle			\dagger				\dagger			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		\%	$\hat{1}$			\dagger		\%	$\hat{1}$	
Volume (vph)	13	383	20	21	320	83	23	38	9	212	12	31
Satd. Flow (prot)	1703	1778	0	1703	1737	0	0	1734	0	1703	1599	0
Flt Permitted	0.950			0.950				0.907		0.700		
Satd. Flow (perm)	1703	1778	0	1703	1737	0	0	1598	0	1255	1599	0
Satd. Flow (RTOR)		5			21			11			39	
Lane Group Flow (vph)	16	451	0	26	474	0	0	88	0	249	54	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases							2			6		
Total Split (s)	20.0	20.0		20.0	20.0		20.0	20.0		20.0	20.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0		5.0	5.0	
Act Effct Green (s)	10.2	16.5		10.2	16.5			15.2		15.2	15.2	
Actuated g/C Ratio	0.23	0.37		0.23	0.37			0.34		0.34	0.34	
v/c Ratio	0.04	0.68		0.07	0.72			0.16		0.58	0.09	
Control Delay	15.6	21.8		15.8	22.9			11.2		21.2	7.0	
Queue Delay	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Total Delay	15.6	21.8		15.8	22.9			11.2		21.2	7.0	
LOS	B	C		B	C			B		C	A	
Approach Delay		21.6			22.5			11.2			18.7	
Approach LOS		C			C			B			B	
Queue Length 50th (tt)	3	79		4	81			11		41	2	
Queue Length 95th (t)	15	\#299		21	\#285			42		\#155	21	
Internal Link Dist (tt)		4350			12631			1291			849	
Turn Bay Length (tt)	165			140						120		
Base Capacity (vph)	585	665		585	660			556		431	575	
Starvation Cap Reductn	0	0		0	0			0		0	0	
Spillback Cap Reductn	0	0		0	0			0		0	0	
Storage Cap Reductn	0	0		0	0			0		0	0	
Reduced v/c Ratio	0.03	0.68		0.04	0.72			0.16		0.58	0.09	
Intersection Summary												
Cycle Length: 60												
Actuated Cycle Length: 44.3												
Control Type: Semi Act-Uncoord												
Maximum v/c Ratio: 0.72												
Intersection Signal Delay: 20.6				Intersection LOS: C								
Intersection Capacity Utilization 48.6\%				ICU Level of Service A								
Analysis Period (min) 15												
\# 95th percentile volume exceeds capacity, queue may be longer.												

Splits and Phases: 1: Peart Rd \& Jimmie Kerr Blvd

	4		\leftarrow	4		\downarrow
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	\%	\uparrow	\uparrow	F	\%	「
Volume (vph)	11	410	458	11	11	11
Satd. Flow (prot)	1703	1792	1792	1524	1703	1524
Flt Permitted	0.394				0.950	
Satd. Flow (perm)	706	1792	1792	1524	1703	1524
Satd. Flow (RTOR)				12		12
Lane Group Flow (vph)	12	456	509	12	12	12
Turn Type	pm+pt	NA	NA	Perm	NA	Perm
Protected Phases	7	4	8		6	
Permitted Phases	4			8		6
Total Split (s)	8.0	20.0	20.0	20.0	20.0	20.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Act Efft Green (s)	29.4	32.6	31.2	31.2	5.8	5.8
Actuated g/C Ratio	0.83	0.92	0.88	0.88	0.16	0.16
v/c Ratio	0.02	0.28	0.32	0.01	0.04	0.05
Control Delay	1.7	1.8	4.7	3.0	13.1	8.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	1.7	1.8	4.7	3.0	13.1	8.4
LOS	A	A	A	A	B	A
Approach Delay		1.8	4.7		10.7	
Approach LOS		A	A		B	
Queue Length 50th (tt)	0	0	0	0	2	0
Queue Length 95th (ft)	4	70	\#168	6	11	9
Internal Link Dist (tt)		12631	390		833	
Turn Bay Length (tt)	325			125		50
Base Capacity (vph)	700	1657	1582	1347	773	698
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.02	0.28	0.32	0.01	0.02	0.02
Intersection Summary						
Cycle Length: 48						
Actuated Cycle Length: 35.3						
Control Type: Semi Act-Uncoord						
Maximum v/c Ratio: 0.32						
Intersection Signal Delay: 3.5				Intersection LOS: A		
Intersection Capacity Utilization 34.1\%				ICU Level of Service A		
Analysis Period (min) 15						
\# 95th percentile volume exceeds capacity, queue may be longer.						
Queue shown is maximum after two cycles.						

Splits and Phases: 5: Jimmie Kerr Blvd \& Tanger Dr

2: Cox Rd/I-10 EB On/Off Ramps \& Jimmie Kerr Blvd

Intersection												
Intersection Delay, s/veh	21.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	87	322	0	0	437	8	0	0	0	145	0	110
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	Stop
Storage Length	250	-	-	250	-	-	-	-	-	-	-	50
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	85	85	90	90	90	80	90	90	90	85	90	85
Heavy Vehicles, \%	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	102	379	0	0	486	10	0	0	0	171	0	129

Major/Minor	Major1	Major2				Minor1		Minor2				
Conflicting Flow All	496	0	0	379	0	0	1075	1080	379	1075	1075	491
Stage 1	-	-	-	-	-	-	584	584	-	491	491	
Stage 2	-	-	-	-	-	-	491	496		584	584	-
Follow-up Headway	2.254	-	-	2.254	-	-	3.554	4.054	3.354	3.554	4.054	3.354
Pot Capacity-1 Maneuver	1047	-	-	1158	-	-	194	214	659	194	216	570
Stage 1	-	-	-	-	-	-	491	492	-	552	542	
Stage 2	-	-	-	-	-	-	552	539	-	491	492	-
Time blocked-Platoon, \%		-	-		-	-						
Mov Capacity-1 Maneuver	1047	-	-	1158	-	-	139	193	659	180	195	570
Mov Capacity-2 Maneuver	-	-	-	-	-	-	139	193	-	180	195	
Stage 1	-	-	-	-	-	-	443	444	-	498	542	-
Stage 2	-	-	-	-	-	-	427	539	-	443	444	-

Approach	EB	WB	NB	SB
HCM Control Delay, s	1.9	0	0	86.6
HCM LOS		A	F	

Minor Lane / Major Mvmt	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2
Capacity (veh/h)	0	1047	-	-	1158	-	-	209	570
HCM Lane V/C Ratio	+	0.098	-	-	-	-	-	1.023	0.151
HCM Control Delay (s)	0	8.811	-	-	0	-	-	116.5	12.4
HCM Lane LOS	A	A			A		F	B	
HCM 95th \%tile Q(veh)	+	0.324	-	-	0	-	-	9.253	0.53

Notes
~ : Volume Exceeds Capacity; \$: Delay Exceeds 300 Seconds; Error : Computation Not Defined

Intersection												
Intersection Delay, s/veh	5.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vol, veh/h	1	300	113	113	383	1	57	1	176	1	1	1
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	200	-	175	250	-	-	-	-	70	-	-	
Veh in Median Storage, \#	-	0	-	-	0	-	-	0	-	-	0	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	
Peak Hour Factor	90	90	85	85	90	90	80	90	85	90	90	90
Heavy Vehicles, \%	6	6	6	6	6	6	6	6	6	6	6	6
Mvmt Flow	1	333	133	133	426	1	71	1	207	1	1	1

Major/Minor	Major1	Major2				Minor1		Minor2				
Conflicting Flow All	427	0	0	333	0	0	1029	1029	333	1028	1028	426
Stage 1	-	-	-	-	-	-	336	336	-	692	692	
Stage 2	-	-	-	-	-	-	693	693	-	336	336	-
Follow-up Headway	2.254	-	-	2.254	-	-	3.554	4.054	3.354	3.554	4.054	3.354
Pot Capacity-1 Maneuver	1111	-	-	1204	-	-	208	230	700	209	230	620
Stage 1	-	-	-	-	-	-	670	635	-	428	439	-
Stage 2	-	-	-	-	-	-	427	439	-	670	635	-
Time blocked-Platoon, \%		-	-		-	-						
Mov Capacity-1 Maneuver	1111	-	-	1204	-	-	189	204	700	134	204	620
Mov Capacity-2 Maneuver	-	-	-	-	-	-	189	204	-	134	204	-
Stage 1	-	-	-	-	-	-	669	634	-	428	391	-
Stage 2	-	-	-	-	-	-	378	391	-	471	634	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			2			19.8			22		
HCM LOS							C			C		

Minor Lane / Major Mvmt	NBLn1	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1
Capacity (veh/h)	294	700	1111	-	-	1204	-	-	215
HCM Lane V/C Ratio	0.481	0.197	0.001	-	-	0.11	-	-	0.016
HCM Control Delay (s)	28.1	11.4	8.244	-	-	8.361	-	-	22
HCM Lane LOS	D	B	A			A		C	
HCM 95th \%tile Q(veh)	2.461	0.729	0.003	-	-	0.371	-	-	0.047

Notes

~ : Volume Exceeds Capacity; \$: Delay Exceeds 300 Seconds; Error : Computation Not Defined

	\rangle						4	\uparrow			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow		\%	$\hat{1}$			\$		\%	\hat{F}	
Volume (vph)	42	262	97	137	270	134	29	41	29	106	86	7
Satd. Flow (prot)	1703	1714	0	1703	1699	0	0	1697	0	1703	1771	0
Flt Permitted	0.950			0.950				0.881		0.676		
Satd. Flow (perm)	1703	1714	0	1703	1699	0	0	1516	0	1212	1771	0
Satd. Flow (RTOR)		32			45			24			5	
Lane Group Flow (vph)	52	412	0	161	458	0	0	123	0	125	117	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	7	4			8			2			6	
Permitted Phases							2			6		
Total Split (s)	15.0	38.0		20.0	43.0		22.0	22.0		22.0	22.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0			5.0		5.0	5.0	
Act Effct Green (s)	10.0	33.6		12.4	42.3			15.5		15.5	15.5	
Actuated g/C Ratio	0.13	0.44		0.16	0.55			0.20		0.20	0.20	
v/c Ratio	0.23	0.54		0.59	0.48			0.38		0.51	0.32	
Control Delay	34.0	18.1		39.0	13.2			25.4		36.0	28.3	
Queue Delay	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Total Delay	34.0	18.1		39.0	13.2			25.4		36.0	28.3	
LOS	C	B		D	B			C		D	C	
Approach Delay		19.9			19.9			25.4			32.2	
Approach LOS		B			B			C			C	
Queue Length 50th (tt)	23	125		74	131			42		55	47	
Queue Length 95th (t)	50	229		124	227			77		101	81	
Internal Link Dist (tt)		4350			12631			1291			849	
Turn Bay Length (t)	165			140						120		
Base Capacity (vph)	222	770		333	958			355		269	397	
Starvation Cap Reductn	0	0		0	0			0		0	0	
Spillback Cap Reductn	0	0		0	0			0		0	0	
Storage Cap Reductn	0	0		0	0			0		0	0	
Reduced v/c Ratio	0.23	0.54		0.48	0.48			0.35		0.46	0.29	
Intersection Summary												

Cycle Length: 80
Actuated Cycle Length: 76.6
Control Type: Semi Act-Uncoord
Maximum v/c Ratio: 0.59
Intersection Signal Delay: 22.4
Intersection LOS: C
Intersection Capacity Utilization 55.7\%
ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 1: Peart Rd \& Jimmie Kerr Blvd

Splits and Phases: 1: Peart Rd \& Jimmie Kerr Blvd

	4	\rightarrow		1			4	\dagger	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	F		${ }^{7}$	\uparrow		${ }^{1}$	4	「	${ }^{7}$	F	
Volume (vph)	42	262	155	253	270	134	36	48	41	106	144	7
Satd. Flow (prot)	1703	1685	0	1703	1699	0	1703	1792	1524	1703	1780	0
Flt Permitted	0.950			0.950			0.581			0.642		
Satd. Flow (perm)	1703	1685	0	1703	1699	0	1041	1792	1524	1151	1780	0
Satd. Flow (RTOR)		38			35				194		2	
Lane Group Flow (vph)	52	485	0	298	458	0	45	60	51	125	189	0
Turn Type	Prot	NA		Prot	NA		pm+pt	NA	Perm	pm+pt	NA	
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases							2		2	6		
Total Split (s)	15.0	31.0		25.0	41.0		14.0	20.0	20.0	14.0	20.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0		4.0	5.0	5.0	4.0	5.0	
Act Effct Green (s)	10.1	26.3		18.0	40.8		23.8	15.2	15.2	24.6	17.9	
Actuated g/C Ratio	0.12	0.31		0.21	0.48		0.28	0.18	0.18	0.29	0.21	
v/c Ratio	0.26	0.89		0.83	0.55		0.12	0.19	0.12	0.32	0.51	
Control Delay	40.3	48.6		53.7	20.6		21.6	34.1	0.6	24.1	37.6	
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay	40.3	48.6		53.7	20.6		21.6	34.1	0.6	24.1	37.6	
LOS	D	D		D	C		C	C	A	C	D	
Approach Delay		47.8			33.7			19.5			32.2	
Approach LOS		D			C			B			C	
Queue Length 50th (ft)	28	251		160	191		17	30	0	51	100	
Queue Length 95th (ft)	56	\#448		\#259	299		37	58	0	88	149	
Internal Link Dist (ft)		4350			12631			1291			849	
Turn Bay Length (ft)	165			140						120		
Base Capacity (vph)	202	545		403	831		369	318	430	396	374	
Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	
Storage Cap Reductn	0	0		0	0		0	0	0	0	0	
Reduced v/c Ratio	0.26	0.89		0.74	0.55		0.12	0.19	0.12	0.32	0.51	
Intersection Summary												
Cycle Length: 90												
Actuated Cycle Length: 85.3												
Control Type: Semi Act-Uncoord												
Maximum v/c Ratio: 0.89												
Intersection Signal Delay: 36.5					Intersection LOS: D							
Intersection Capacity Utilization 73.9\%					ICU Level of Service D							
Analysis Period (min) 15												
\# 95th percentile volume exceeds capacity, queue may be longer.												
Queue shown is maximum after two cycles.												

Splits and Phases: 1: Peart Rd \& Jimmie Kerr Blvd

Splits and Phases: 1: Peart Rd \& Jimmie Kerr Blvd

	4			7				4	p	\checkmark	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	快	「	\％${ }^{1 / 1}$	䩒个	F	\％${ }^{1+1}$	个4	「	\％${ }^{1 / 1}$	性	F
Volume（vph）	42	262	363	710	270	134	61	73	92	106	372	7
Satd．Flow（prot）	1703	4893	1524	3303	4893	1524	3303	3406	1524	3303	3406	1524
Flt Permitted	0.562			0.950			0.950			0.950		
Satd．Flow（perm）	1007	4893	1524	3303	4893	1524	3303	3406	1524	3303	3406	1524
Satd．Flow（RTOR）			260			149			194			194
Lane Group Flow（vph）	47	291	403	789	300	149	68	81	102	118	413	8
Turn Type	pm＋pt	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4			8			2			6
Total Split（s）	16.0	23.0	23.0	31.0	38.0	38.0	14.0	22.0	22.0	14.0	22.0	22.0
Total Lost Time（s）	5.0	5.0	5.0	5.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0
Act Efft Green（s）	28.5	18.3	18.3	23.4	38.4	38.4	10.2	16.2	16.2	10.2	16.2	16.2
Actuated g／C Ratio	0.34	0.22	0.22	0.28	0.46	0.46	0.12	0.19	0.19	0.12	0.19	0.19
v／c Ratio	0.11	0.27	0.75	0.86	0.13	0.19	0.17	0.12	0.23	0.29	0.63	0.02
Control Delay	12.8	29.8	22.6	39.6	16.1	4.1	37.2	31.0	1.2	38.3	37.3	0.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	12.8	29.8	22.6	39.6	16.1	4.1	37.2	31.0	1.2	38.3	37.3	0.1
LOS	B	C	C	D	B	A	D	C	A	D	D	A
Approach Delay		24.8			29.7			20.5			37.0	
Approach LOS		C			C			C			D	
Queue Length 50th（ft）	11	50	73	211	39	0	18	20	0	31	115	0
Queue Length 95th（ft）	28	77	\＃223	\＃294	60	37	38	40	0	58	164	0
Internal Link Dist（tt）		4350			12631			1291			849	
Turn Bay Length（ t ）	300		300	300		300	300		300	300		300
Base Capacity（vph）	447	1070	536	1043	2242	779	401	703	468	401	703	468
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.11	0.27	0.75	0.76	0.13	0.19	0.17	0.12	0.22	0.29	0.59	0.02
Intersection Summary												
Cycle Length： 90												
Actuated Cycle Length： 83.7												
Control Type：Semi Act－Uncoord												
Maximum v／c Ratio： 0.86												
Intersection Signal Delay： 29.0				Intersection LOS：C								
Intersection Capacity Utilization 69．4\％				ICU Level of Service C								
Analysis Period（min） 15												
\＃95th percentile volume exceeds capacity，queue may be longer．Queue shown is maximum after two cycles．												

Splits and Phases：1：Peart Rd \＆Jimmie Kerr Blvd

	4	\rightarrow		7			4	\uparrow	7	\downarrow	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	种	「	\％${ }^{1 / 4}$	快	「	7＊	个 \uparrow	「	\％${ }^{*}$	¢ \uparrow	F
Volume（vph）	13	383	75	149	320	83	331	336	634	212	67	31
Satd．Flow（prot）	1703	4893	1524	3303	4893	1524	3303	3406	1524	3303	3406	1524
Flt Permitted	0.531			0.950			0.950			0.950		
Satd．Flow（perm）	952	4893	1524	3303	4893	1524	3303	3406	1524	3303	3406	1524
Satd．Flow（RTOR）			182			182			345			182
Lane Group Flow（vph）	14	426	83	166	356	92	368	373	704	236	74	34
Turn Type	pm＋pt	NA	Perm	Prot	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4			8			2			6
Total Split（s）	15.0	20.0	20.0	15.0	20.0	20.0	19.0	41.0	41.0	14.0	36.0	36.0
Total Lost Time（s）	5.0	5.0	5.0	5.0	5.0	5.0	4.0	5.0	5.0	4.0	5.0	5.0
Act Effct Green（s）	25.2	15.1	15.1	10.1	27.5	27.5	18.6	30.0	30.0	10.1	26.3	26.3
Actuated g／C Ratio	0.30	0.18	0.18	0.12	0.33	0.33	0.22	0.36	0.36	0.12	0.31	0.31
v / C Ratio	0.04	0.49	0.20	0.42	0.22	0.15	0.51	0.31	0.92	0.60	0.07	0.06
Control Delay	20.7	34.6	1.0	39.9	24.2	0.5	35.4	19.8	32.0	43.8	20.1	0.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	20.7	34.6	1.0	39.9	24.2	0.5	35.4	19.8	32.0	43.8	20.1	0.2
LOS	C	C	A	D	C	A	D	B	C	D	C	A
Approach Delay		28.9			24.9			29.8			34.4	
Approach LOS		C			C			C			C	
Queue Length 50th（tt）	5	81	0	46	52	0	102	73	196	67	14	0
Queue Length 95th（ft）	19	115	0	77	97	0	149	106	\＃439	105	30	0
Internal Link Dist（tt）		4350			12631			1291			849	
Turn Bay Length（ t ）	300		300	300		300	300		300	300		300
Base Capacity（vph）	373	876	422	394	1590	618	746	1464	851	394	1261	678
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.04	0.49	0.20	0.42	0.22	0.15	0.49	0.25	0.83	0.60	0.06	0.05
Intersection Summary												
Cycle Length： 90												
Actuated Cycle Length： 84.5												
Control Type：Semi Act－Uncoord												
Maximum v／c Ratio： 0.92												
Intersection Signal Delay： 29.1				Intersection LOS：C								
Intersection Capacity Utilization 71．8\％				ICU Level of Service C								
Analysis Period（min） 15												
\＃95th percentile volume exceeds capacity，queue may be longer．Queue shown is maximum after two cycles．												

Splits and Phases：1：Peart Rd \＆Jimmie Kerr Blvd

[^0]: Notes: $(\mathrm{S})=$ Signal, $(\mathrm{MSS})=$ Minor Street Strop
 V/C shown if LOS E or F
 Queue is the reported 95th percentile lenght in feet

